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EXECUTIVE SUMMARY

The research conducted under contract AFOSR 83-0278 is reported in seven tech-
nical reports corresponding to Chapters 1 through 7 in this report. A brief
description of each study follows:

B CHAPTER 1 USING TWO SEQUENCES OF PURE NETWORK PROBLEMS
~ TO SOLVE THE MULTICOMMODITY NETWORK FLOW PROBLEM

Summary: This paper presents a new algorithm for solving large multicommodity
network flow problems. The work was motivated by the Casualty
Evacuation Model originally developed by Lt. Col. Dennis Mclain,
Captain Robert Chmielewski continued this activity and eventually a
modification of this model was solved by the P.I. and Captain
Chmielewski on a CDC Cyber 205. All of this activity was directed by
Mr. Thomas Kowalsky of DSC/Plans of MAC Headquarters,

Publication Status: This work has not been submitted for publication.

Background: This was the dissertation research of ™. Ellen Allen.
CHAPTER 2 ORKS WITH SIDE CONSTRAINTS:
,AN LU FACTORIZATI N_QPDATE) o ~

Summary: An important class of mathematical programming models which are fre-
quently used in logistics studies is the model of a network problem
having additional linear constraints. A specialization of the primal
simplex algorithm which exploits the network structure can be
applied to this problem class. This specialization maintains the
basis as a rooted spanning tree and a general matrix called the
working basis. This paper presents the algorithms which may be used
to maintain the inverse of this working basis as an LU factoriza-
tion, which is the industry standard for general linear programming
software. Our specialized code exploits not only the network struc-
ture but also the sparsity characteristics of the working basis.,
Computational experimentation indicates that our LU implementation
results in a 50 percent savings in the non-zero elements in the eta
file, and our computer codes are approximately twice as fast as MINOS
and XMP on a set of randomly generated multicommodity network flow
problems.

Publication Status: Published in The Annals of the Society of Logistics
Engineers, 1, 1, (1986), 66-85.

Background: This work is a summary of the dissertation research of Dr,
Keyvan Farhangian.
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QHAPTER 3 THE FREQUENCY ASSIGNMENT PROBLEM:
A SOLUTION VIA NONLINEAR PROGRAMMING

Summary: This paper gives a mathematical programming model for the problem of
assigning frequencies to nodes in a communications network. The
objective is to select a frequency assignment which minimizes both
cochannel and adjacent-channel interference. In addition, a design
engineer has the option to designate key links in which the avoidance
of jamming due to self interference is given a higher priority. The
model has a nonconvex quadratic objective function, generalized
upper-bounding constraints, and binary decision variables. We
developed a special heuristic algorithm and software for this model
and tested it on five test problems which were modifications of a
real-world problem. Even though most of the test problems had over
600 binary variables, we were able to obtain a near optimum in less
than 12 seconds of CPU time on a CDC Cyber~-875.

Publication Status: Published in Naval Research Logistics, 34, (1987), 133-
139,

Background: This was our first application in the communications area.

™ CHAPTER 4 A GENERALIZATION OF POLYAK'S CONVERGENCE RESULT
= = "FOR SUBGRADIENT oPrlMIZATIBN

Summary: This paper generalizes a practical convergence result first presented
by Polyak., This new result presents a theoretical justification for
the step size which has been successfully used in several specialized
algorithms which incorporate the subgradient optimization approach.

Publication Status: Published in Mathematical Programming, 37, 3, (1987) 300-
313,

Background: The convergence theory presented in this paper was
motivated by the good computational results achieved by
Drs. Ellen Allen and Bala Shetty in their dissertations.

\EHAPTER 5 THE EQUAL FLOW EBOBLEM)

Summary: This paper presents a new algorithm for the solution of a network
problem with equal flow side constraints. The solution technique is
motivated by the desire to exploit the special structure of the side
constraints and to maintain as much of the characteristics of pure
network problems as possible. The proposed algorithm makes use of
Lagrangean relaxation to obtain a lower bound and decomposition by
right-hand-side allocation to obtain upper bounds. The lLagrangean
dual serves not only to provide a lower bound used to assist in
termination criteria for the upper bound, but also allows an initial
allocation of equal flows for the upper bound. The algorithm has
been tested on problems with up to 1500 nodes and A000 arcs.
Computational experience indicates that solutions whose objective
function value is well within 17 of the optimum can be obtained in

17-65% of the MPSX time depending on the amount of imbalance inherent
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0 in the problem. Incumbent integer solutions which are within 99.997
N feasible and well within 17 of the proven lower bound are obtained in
a straightforward manner requiring, on the average, 30% of the MPSi
. time required to obtain a linear optiium.
-
o
-
F}j Publication Status: This paper has been accepted for publication in the
N European Journal of Operations Research.,
.\.

’

hn X

Background: This work is a summary of the dissertation research of Dr.
: Bala Shetty.

A
_CHAPTER 6 A PARALLELIZATION OF THE SIMPLEX é}GORITHME

Summary: This paper presents a parallelization of the simplex method for
linear programming. Current implementations of the simplex method on
sequential computers are based on a triangular factorization of the
inverse of the current basis. An alternative decomposition designed
for parallel computation, called the quadrant interlocking factoriza-
tion, has previously been proposed for solving linear systems of
equations. This research presents the theoretical justification and
algorithms required to implement this new factorization in a simplex-
based linear programming system.

Publication Status: This paper has been submitted for publication and is
currently under review,

Backzround: This paper is a summary of the dissertation research of
Dr. Hossam Zaki.

‘ CHAPTER 7 MINIMAL QPANNING TREES:

A COMPUTATIONAL INVESTIGATION OF PARALLEL é}GORITHMS, —— -

Summary: The ohjective of this investigation is to computationally test
parallel algorithms for finding minimal spanning trees. Computa-
tional tests were run on a single processor using Prim's, Kruskal's
and Boruvka's algorithms. Our implementation of Prim's algorithm is
superior for high density graphs, while our implementation of -
Boruvka's algorithm is best for sparse graphs. Implementations of
parallel versions of both Prim's and Boruvka's algorithms were tested
on a twenty-cpu Balance 21000. For the environment in which a min-
imum spanning tree problem is a subproblem within another algorithm,
the parallel implementation of both Boruvka's and Prim's algorithms
produced speedups of three and five on five and ten processors,
respectively. The one-time overhead for process creation negates
most, if not all of the benefits for solving a single minimum
spanning tree subproblem.

Publication Status: This paper has been submitted for publication and is
currently under review,

Background: This is our first computational investigation which has
been completed since the parallel computer arrived at
Southern Methodist University.
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CHAPTER I

INTRODUCTION

This dissertation presents a new technique for solving very
large multicommodity network flow problems. The specific application
which motivated this work originated with the United States Air force
and was first presented to us by Lt. Col. Dennis McLain, the Assistant
Director of Operations Research for the Military Airlift Command at
Scott Air Force Base. The problem is an extremely large casualty
evacuation model to be used by the Air Force in forming a plan for the

evacuation of wartime casualties. This plan would be implemented in

"

i

case of a BEuropean military conflict involving United States troops.

PAY A 4

f"ffft.fl'

Lt. Col. Mclain was the first to model this problem as a multi-

1,

commodity network flow problem where the commodities correspond to the
various types of wounds. The nodes represent such entities as European
bases and United States medical facilities, and the arcs represent
specific aircraft flights. (A complete description of this problem is
given in Section 1.3.) This problem is far too large to be solved by
any known existing computer codes. In addition, since many of the

data are only rough estimates {(the number of casualties of various
types expected at given locations), an exact technique is not called
for. Instead a technique is needed to discover a guaranteed ¢-optimum

for any given e >0.
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This is precisely what our technique accomplishes. It generates
successively better upper and lower bounds on the optimum, stopping
when the two bounds are within a prescribed tolerance. We exploit
the multicommodity network structure in both the lower and upper bound
routines so that only a single commodity minimum cost network flow
optimizer is needed. EVAC, the computer code which implements our
technique, has been used to solve a series of test problems in less
time and requiring less memory than MCNF, a specialized multi-
commodity network flow problem solver. In addition EVAC is capable of

solving very large problems which MCNF is unable to solve.

1.1 Notation and Conventions

The notational conventions employed throughout this work are
described in this section. Malrices are denoted by upper case Latin
letters. The element of a matrix, A, which appears in the ith row and
jth column is indicated by Aij' Tne symbol I is used to denote an
identity matrix with dimension appropriate to the context. Lower case
Latin and Greek letters are used to denote vectors. The symbol 0 is
used to represent a vector of zeroes with dimension appropriate to
the context. The unit vector, whose only non-zero component is a one
in the jth position, is denoted ej. Subscripts are used to indicate

individual components of a vector, or as an index to indicate which of

Y
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a sequence of related vectors is meant. Superscripts on vectors corre-
spond to individual commodities. Note that vectors are considered to
be row vectors or column vectors as appropriate to the context; that
is, no special notation is used to indicate the transpose of a vector.
The inner product of two vectors, x and y, is denoted simply by xy.
The notation ||x|| is used to express the Euclidian norm, (xx)1/2.
Scalars are written as lower case Greek or Latin letters.

Euclidean n-dimensional space is denoted R". Functions are
written as lower case Latin letters, and functional values have their
arguments in parentheses. For example g{y) is used to denote the
function g evaluated at the point y. The one exception to this
convention 1is the projection operation described in Chapter III. In
this case P[x] is used to express the projection of x onto the
specified region.

Upper case Greek letters denote sets, with the exception that
=g’y) is used to denote the set of subgradients of a functicn g at a
point y .n the domain of g. The svmbol ¢ is used as the set inclusion
symbol and as a termination tolerance.

We use MAY .S’ to denote the largest element of a set S;
similarly MIN{S} indicates the smallest element of S. The symbol « is

used for infinity, and ® denotes the end of a proof. All other

notation is standard.
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1.2 Problem Definition

A network is composed of two entities: nodes and arcs. The arcs
may be viewed as undirectional means of commodity transport, and the
nodes may be thought of as locations or terminals connected by the
arcs and served by whatever physical means of transport are associated
with the arcs. We limit our consideration to networks with finite
numbers of nodes and arcs. For a given network we denote the number
of nodes by m and the number of arcs by n. We impose an ordering on
the nodes and arcs so as to put them in a one-to-one correspondence
with the integers {1,...,m} and {1,...,n}, respectively. The struc-
ture of a given network may be described, then, by an m x n matrix
called a node-arc incidence matrix. Such a matrix, A, is defined in
this way:

+1, if arc j is directed away from node i
Aij z -1, if arc j 1s directed toward node i

0, otherwise.

Additionally, for a multicommodity network, we are concerned with more
than one type of item (commodity) flowing through the arcs. We order
these commodities to correspond to the integers {1,...,K}.
We define the following quantities to be used in the formulation
of the multicommodity network flow problem:
-- A is the m x n node-arc incidence matrix corresponding to the
underlying network.

- xk is an n vector of decision variables for k = 1,...K. Note

that x? represents the amount of flow of commodity k on arc j.
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-- ck 1s an n vector of unit costs for k = 1,...,K. So

o
cg denotes the cost for one unit of flow of commodity k on arc
Je
k . . k
. -- r 1is an m vector of requirements for k = 1,...,K, so that ri
denotes the required number of units of commodity k at node i. 1If
r? < 0 then node i is said to be a demand node for commodity k
. with demand = |r‘;| If rli( > 0 then node i is said to be a

supply node for commodity k with supply = rt. And if r? =0
then node i is said to be a transshipment node for commodity k.
-- u is an n vector of mutual arc capacities. That is, the total
flow of all the commodities combined for arc j cannot exceed Uj'
-- vk is a n vector of arc capacities for commodity k (k = 1,...,K).
vg , then, represents an upper bound on the flow of commodity k

on arc J.

We sometimes refer to the entire vector of decision variables
(x1,...,xK) as simply x. Similarly we use c, r, and v to denote the
entire vector of costs, requirements and upper bounds, respectively.

Using these ideas, we may formulate the multicommodity network

flow problem for a given network with m nodes, n arcs, ana K commodities

as follows:

Minimize I ckxk
k
. k k
Subject to Ax =T, k= 1,...,K (MP)
by xk i u
k
k k

ke e ety N
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1.3 The Casualty Evacuation Model

A large European military conflict involving U.S. Armed fForces
could result in more casualties than could be effectively handled in
European medical facilities. Yo alleviate this overcrowding, the
Department of Defense plans to implement the following evacuation
policy:

"During the first 30 days of a conflict, if a wounded

soldier cannot be returned to duty within 15 days, then

he will be evacuated to a medical facility in the United

States. In the next 30 days the limit on treatment time

1s increased to 30 days."
Given a scenario concerning such a conflict (i.e. the number and loca-
tions of wounded and the types of wounds), this evacuation problem may
be modelled as a multicommodity network flow problem. Lt. Col. Dennis
McLain was the first to model the problem in this way. In Lt. Col.
McLain's model the nodes correspond to 9 ELuropean recovery bases and
95 United States locations. The arcs correspond to aircraft flights
connecting European and U.S. facilities. The commodities are 11
different patient types.

In order to enforce a capacity on a given facility, it is
necessary to duplicate the corresponding node using the capacity as an
upper bound on the arc between the duplicate nodes. For example, if

node A represents a hospital with 300 beds, then we substitute two

Aaal S aci s Al ~dva -
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nodes, A1 and AZ, along with an arc whose capacity is 300. Ffurther,
it 1s necessary to include 60 coples of the entire network, one for
each of the 60 one-day time periods. Additional arcs are created to
link each time period to the next. The model includes a dummy "sink"
node for each time period and one "super sink" node, along with
capacitated arcs to allow patients who have recovered to exit from the
system. These considerations produce a very large model. The

dimensions of the constraint matrix are shown below:
r— g
A f12,5a1 TOWS

(28

where A1 = ... = A11. The row dimension of this model is over 137,000,
which is far bevond the scope of any known existing computer code. To
put tnhese figures in perspective, we note that Kennington reports that
the largest models he has solved using his primal partitioning code,
MCNF, have been on the order of 3000 rows [2].

Our plan has been to develop a specialized solution procedure
which would sclve & scaled-down version of Lt. Col. McLain's model. We

anticipate aggregation of the data, possibly using some of the

following ideas:

AT
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1) Aggregation of the time periods. Note that simply using

t

3-day time periods instead of 1-day time periods reduces the

problem size to around 46,000 rows.

| S
R S R R R |

(2) Aggregation of similar patient types.
(3) Aggregation of U.S. medical facilities so that facilitiet

- which are located within a given number of miles of one
N another are treated as one node.

At the writing of this dissertation we have not yet received any
large test problems from the Air Force. As a result, we are unable to
report on the problem size limitations of our technique. However, in
an attempt to test our software on a relatively large problem, we
7 solved a randomly generated test problem with around 9,000 rows. (See
Chapter 4 for the details of this problem.) This is the largest

problem we have attempted so far.

y 1.4 Accomplishments of This Investigation

&

This dissertation proposes a new technique for solving extremely

large multicommodity network flow problems. Our method involves

D R Rt W Sy e

generating upper bounds on the optimal objective value by partially
solving the problem using a resource-directive decomposition technique,

and generating lower bounds on the optimal objective value by partially

s a €.t

solving a Lagrangian dual of the problem. Both the upper

\*

and lower bound routines exploit the network structure of the problem,

.- decomposing it by commodities and solving the resulting pure network
problems. In the limit both bounds must converge to the optimal
objective function value; in practice we stop when the difference

between the two bounds is within some termination tolerance.

S acmt At e e P R W S L, e e e, ., e e e M. L U T T N e e . EE T
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Whether solving for lower bounds or for upper bounds a sub-
gradient optimization technique is used. At each iteration this
procedure requires the computation of a subgradient, the selection of
a step size, and a projection operation. In Section 3.1, we obtain a
new convergence result for a particular class of subgradient pro-
cedures. Then, in Section 3.2, we introduce a new beuristic, closely
related to the subgradient optimization procedure, which has worked
well for our test problems.

Qur technigue has been tested on randomly generated test
problems and on one problem which was formulated specifically to
represent the class of evacuation planning problems for which the code
was developed. In addition, the same set of test problems was solved
by MCNF [51], a general purpose multicommodity network flow problem
solver which uses a primal partitioning scheme. Computation times for
both codes are presented. Our code used an average of 68% of the time
needed by MCNF, performing significantly better on the problems with
fewer commodities. In addition our code required on the order of 1/K

the amount of main memory for a K-commodity problem, so it can solve

significantly larger problems than MCNF.
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CHAPTER 11

A SURVEY OF RELATED LITERATURE

In this chapter we present an overview of the existing work on
which this dissertation is based. Section 2.1 deals with the work that
has been done in the area of pure network models. Then in Section 2.2
we address the broader area of multicommodity network methods. Since
our algorithm involves a subgradient optimization technigue, both in
the Lagrangian dual portion and in the resource-directive decomposition
routine, we provide some references involving subgradient optimization

in Section 2.3

2.1 Pure Networks

Network problems are linear programming problems with node-arc
incidence matrices as their constraint matrices. Within this class,
known formally as minimal cost network flow problems, there are several
variations including transportation problems, transshipment problems,
assignment problems, maximal flow problems, and shortest path problems.

Ideas for solution of network problems can be traced at least as
far back as 1939, to the work of Professor Leonid Kantorovich [41].
Kantorovich, along with Professor Tjalling C. Koopmans received the.
Nobel Prize in Economic Science in 1975, for contributions to the

theory of optimum allocation of scarce resources. Koopmans and Reiter
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[54] and Frank L. Hitchcock [42], working independently, were the first
to formulate the transportation problem. The mid-fifties saw a surge
of interest and work in the areas of network algorithms. It was around
this time at Alex Orden [59] generalized the transportation model to
allow transshipment points. Lester Ford and Delbert Fulkerson [22]
[20] formulated and investigated solution techniques for the maximal
flow problem and the minimal cost network flow problem. The spe-
cialized algorithms that have been developed for solving network
problems may be classified into two groups: primal-dual techniques, and
specializations of the primal simplex algorithm. Primal-dual methods
for solving networks began with Harold Kuhn's Hungarian Algorithm for
the assignment problem [55] and culminated in Fulkerson's Out-of-Kilter
Algorithm [23]. Primal simplex based techniques originated with the
work of Professor George Dantzig [17] and continued through Ellis
Johnson's 1965 paper [47]. The basis for Johnson's work can be traced
to the work of Dantzig [18] and Charnes and Cooper [14].

Since that time much work has been done in the area of solution
techniques, and computational advances have been made by the develop-
ment of more efficient data structures. The credit for much of this
work goes to Professors fFred Glover and Darwin Klingman and their
colleagues at the University of Texas. This is evidenced by such
papers as Barr, Glover and Klingman [9] [10], Glover, Hultz and
Klingman [26] [25], Glover, Karney and Klingman [27], Glover, Karney,
Klingman and Napier [28], Glover and Klingman [29] [31] [30], Glover,
Klingman and Stutz [32], and Karney and Klingman [49]. Others who have

contributed to the research include Srinivasan and Thompson [63] (647,




Y
to

Bradley, Brown, and Graves [13], and Mulvey [57] [58]. In additior

significant work has been performed by Professors Jeff Kennington,

~

Richard Barr, and Richard Helgason of Southern Methodist University as

seen in such works as [3], [41], and [52].

e e

Today network algorithms have been demonstrated to solve linea:

network problems 50 times faster than general linear programming

algorithms [6]. Additionally a computer implementation of such s
technique may require only half the memory of the general L.P. pac-o:
[6]. These advances are due to the efficient data structures wh.~
have been developed to allow a basis for a network problem to be si::ec
as a rooted spanning tree on the nodes in the network. Using this .cré
all the simplex computations such as pricing, ratio test, anc upss'¢c,
can be performed via labelling algorithms on the basis tree. Th:«

eliminates the need to store the basis inverse 1in factored form,

2.2 Multicommoditv Networks

Multicommodity network flow problems are problems in whic ”
several different types of items {commodities) must share arcs
capacitated network. Each solution technigue for multicommodi‘s
network models can be classified as one of two main types of ®

algorithms: partitioning algorithms and decomposition algorithm: .

2.2.1 Partitioning Algorithms

Partitioning algorithms are specializations of the simplex me!nhod
which exploit the multicommodity network structure by partitioning the

basis into more than one part. 1In one part sdvantage is taken of tne
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special network structure. Those who have studied primal partitioning
algorithms include Kennington [50], Helgason and Kenniriton [40], Ali,
Helgason, Kennington, and Lall [4], Hartman and Lasdon [36] [35],

Maier [56], and Saigal [61]. Ali and Kennington [6], in their
computational research, reported solution times averaging 5 times
faster than general linear programming codes. A dual partitioning
method was proposed by Grigoriadis and White [34). A primal-dual
partitioning scheme was developed by Jewell [46]. In addition a
factorization technique was proposed by Graves and McBride [33]. MCONF,
the multicommodity network code with which we compared our solution

times, is a primal partitioning program.

2.2.2 Decomposition Algorithms

Decomposition schemes seek to solve the problem by decomposing it
into several smaller subproblems, each of which takes the form of &
pure minimum cost network flow problem. A master program coordinates
the solution process. Decomposition procedures for the multicommodity
network flow problem fall into two categories: price-directive schemes
and resource-directive schemes.

Price-directive decomposition is based on the well-known research
of Dantzig and Wolfe [19]. In a price-directive approach, the K-
commodity problem is decomposed into K single commodity problems. The
master program then uses the simplex method while the subproblems test

for optimality and select candidates to enter the basis of the master

problem. Fford and Fulkerson [21] were the first to develop this
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approach for solving multicommodity network flow problems. Tomlin [67]
was the first to develop a computer code implementing this technique.
Others who have studied price-directive decomposition schemes are
Jarvis [43], Jarvis and Keith [44], Chen and DeWald [15], and Jarvis
and Martinez [45]. Price-directive approaches for generalizations of
this problem have been proposed by Cremeans, Smith, and Tyndall [16],
Swoveland [65] [66], Weigel and Cremeans [68], and Wollmer [£9].
Resource-directive decomposition schemes decompose the problem by
commodities, and the master problem systematically distributes the
mutual arc capacities among the commodities. At each iteration the
optimal solutions to the single commodity subproblems are used to
compute a new set of allocations. Robacker [60] was the first to
suggest this approach for multicommodity network praoblems. Research on
this technique has been presented by Swoveland [65], Assad [8], Ali,

Helgason, Kennington and Lall [3], and Kennington and Shalaby [53].

2.3 Subgradient Optimization

The subgradient optimization technique was first proposed by Shor
[62] in 1964. Since that time subgradient algorithms have been applied
to many different optimization problems. Held and Karp [37] and Held,
Wolfe and Crowder [38] made use of the approach in solving the
symmetric travelling salesman problem. Bazaraa and Goode [11] applied
the algorithm to the asymmetric travelling salesman problem. Sub-
gradient methods have been used to solve the assignment problem [38].

Glover, Glover and Martinson [24] applied a subgradient technique to

R
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solve a special network with side constraints, and Ali and Kennington

[7] made use of it in research involving the m-travelling salesman

problem,
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| CHAPTER 111

8 THE ALGORITHM

2 Here we present a new solution technique for the multicommodity
network flow problem. This technique involves finding successively
better upper and lower bounds on the optimal objective function value.
The algorithm terminates whenever the two bounds are within a prescribed
tolerance or when it can be shown that the current solution is an exact
optimum.

Lower bounds are generated by partially solving a Lagrangian dual.
At each iteration a Lagrangian relaxation of the original problem is
) solved; since these relaxations decompose on commodities, only a
E (single-commodity) minimum cost network flow optimizer is needed. A
. subgradient direction is used to adjust the Lagrange multipliers for the
next iteration.

Upper bounds are generated using a modification of the resource-
directive decomposition technique first suggested by Robacker [60]. We
introduce a specialization of the subgradient direction approach which
was first applied to this class of problems by Held, Wolfe, and Crowder
9 [38].

“ With minor restrictions on the step sizes we show that both the
upper and lower bounds converge to the optimal objective value of the
original multicommodity network flow problem. Hence in the limit the

1 algorithm will converge to an exact optimum. In practice we seek a

near-opt imum.
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~ 3.1 Subgradient Optimization
A
: Let us first consider the general subgradient algorithm for
L "
: optimization of convex functions; later we will present specializations
’ of the technique for the upper and lower bound problems. Consider the
w;
; nonlinear programming problem
é Minimize g(y)
’ Subject to ye T
Zf where g is a real valued function that is convex over the compact,
0 convex, nonempty set . A vector n is called a subgradient of g at a
. point x if
. gly) - gix) > r(y - x) for all ye .
;ﬂ Note that if g is differentiable at x, the only subgradient at x 1s the
; gradient. We denote the set of all subgradients of g at x by zqix’.
E The subgradient algorithm proceeds in this manner: Given a point
E x in 7, find a subgradient of g at x, obtain a new point by moving a

given step size in the negative subgradient direction, and finally

project this new point back onto I. This projection operation takes a

A b R Rt

point x and finds the point in I that is '"closest" to x with respect to
the Euclidean norm. We denote the projection of x onto I by P[x].
Using this notation we present the general subgradient optimization

algorithm for minimizing a convex function g [52].
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ALGORITHM 3.1  SUBGRADIENT OPTIMIZATION ALGORITHM

Ster 0 !Initialization®

Let Yo be any element of I. Select a set of step sizes,
s1,sz,53,..., and set 1+0.

Step 1 (Find Subgradient)

Let r, ¢ Eg(yi). If rn, = 0 terminate with y, optimal.

Step 2 {Move to New Point)

Set v. .~ P[y. -s.r.]. Set i< i + 1. Return to step 1.
1+1 1 1

Let us now turn our attention to the selection of step sizes.
Several 1ideas for choosing step sizes have been proposed. These
typically involve a seguence of constants, ﬁ.1,kﬂ.23,...} which satisfy
the following conditions:

}i > 0, for all i,

The subgradient algorithm can be shown to converge when any of the

following three formulae are used for determining step sizes [52]:

(i) s, = ;i ,
(i1) s, =5 /| 12, (3.2)
i i i
, . 2
(i11) s =2 laly,) - g ]/||ni||

where g* denotes the optimal objective value.

. _.‘:,. .
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Propositions 3.1, 3.2, and 3.3 may be found in Kenningtor and

Helgason [52]), and are given here as necessary preliminary results.

Proposition 3.1 [52]

Let yer, and let xR, Then (x-P[x])(y-P[x]) <

Proof

Choose o so that 0<a<1. Since T is convex, ay+(1-a)P[x]cr.

0.

the definition of P[x], ||x-P[x]||<||x-(ay+(1-a)P[x])]].

||x—(ay+(1-a)P[x])||2

| |x-P[x]-aly-P[x])] |2

| |x-P[x]} |2

(TR LN

Then (x-P{x])(y-P[x]) < ||y-P[x]||a/2. And, since & can be taken

arbitrarily close to O,
(x-P[x]){y-P[x]) <0 . @

Proposition 3.2 [52]

Let x, y ¢ R™. Then [|P[xJ-P[y]|] < [Ix-y]].

Proof

Case 1: Supose P[x] = P[y]. Then

[1PIxI-PLyI]] = 0 < [x-y1].

Case 2: Suppose P{x] # P[y). Then since P[x]eT,

and P[yleT, from Proposition 3.1 we have that
(x-P[x])(P{y]-P[x]) < O
and
(y-PLlyD(P[x]-P[y)) < 0.
We may rewrite the above inequalities as
x(PLy1-PLx])-PLx]PLy]+] [PLx]] % < O

and

h-’ ------- ) - L] L4 -
ORISR Y i Y, (L

e PR

. » k) il C- R - . Te T - "
AN R LT O RO N ".'. AP

Thus

|1x-PIx]| | %+02]|y-PIx]]|]% -2a(x=P[x]) (y-P{x]).
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v(P(x3-P[y )-p[y P[xJ+] IP1y 111 < o.
Adding these inequalities, we obtain

=y} PLy)-PLxD+ | [PLy)-PLx]] |2 < O
Then from the Cauchy-Schwartz inequality,

-0y (PLy)-PIxD) < [ x=yl| |PLy]-PIx]]].
Thus

[1PLyI-eLxd] 12 < [lxeyl] HPLYI-PIx]]]-
And since P{x] # P[y],

HPIxI-PLyIIT < [lx-yl]. =

T

Proposition 3.3 752]

If i # 0, then, for any yc7,
2 2 2 2
1y jq =y 17 <y =y 1S+ s 0 ng P28 my Cymy )

';. Proof

Let i be any iteration of the subgradient algorithm. Suppose

n. # 0. Let ve7., Tnen, by Proposition 3.2,
i )

| A

. :
® PIPLy =87 3-POy 3010 <y -5yl

, 2 2 2 '
Hz\l-vll + si Hr'lH + zslrl(y—‘yly.

' - v s ~ 1 =
Since P[yl)=y and P‘yi s, i] = y.

ie1? we have that

|1y

a2 Ny vl s s B 12 s 25,n (y-y) . ®

Our main convergence result is for the particular step size

scheme:

- 2
- ( -
s. = li[g\yi) g]/llnill

1




where g is a lower bound for the optimal objective and where we are
liberty to select bounds o and £ for the {li} such that for each i, 0 <

a < .

<2< 2.
1—

Proposition 3.4

Let (i) g be a known lower bound for the optimal objective, g*,
with g*>g;
(i1) {Ai} be any infinite sequence such that
for all i, 0<q§ki38<2; and
(1i1) s, = 2,[aly)-81/]|n, 117

If there is a constant C such that for all i, ||n;]} < C, and if v > O
is given, then there is some n such that g(y ) < g*+[8/(2-8) N g*-q)+
.‘-

Let v>0 be given. Let (i), (ii), and (iii) hold. Let y* be an
optimal point, and for all i, ||ni|| < C. Suppose, contrary to the
desired result, that for all n, g(yn)>g*+[e/(z-s)](g*-§)+y. Then, by
Proposition 3.3,

2 2 2r =2 2
I|Yi+1-y*|| h H)l'y*H +)\i [g'yl)'g] /Hﬂl'l
+ 20, {Laly )-8/ | ny 1P 3y (y*ey )
< lyy* 2 Platy )-8/ [ |12

+ 25 {laly;)-3)/| |ni||2}[g"9(yi)]’
since nicag(yi)-

Since £>5.>0,then £).2> A.z. So,
- 1 i 1

2 2 -2 2
-y 115y =yr 1178 Lgly )-a1%/ | |ng 1]

I|y1+1

T, S ST LA RS SO gt



+

-t re 2 *
zAix[g(yi)—gl/[lﬂill Hg —g(yi)]

[y =y* 11 2e(2-825 (L aly )81/ [, 113

[(g*—g(yi))+(s/(Z-s))(g*—E)].

Since gly;) > g*+(8/(2-8))(g*-g)+vy, then -y > g*-gly,) +
(e/(2-8))(g*-g). So,

1y 3=y 1P <y mye 112 (2=805 Loty 0-80v/] I ny 112

Since gﬁig(yi), «<; , and ]]nill < C, then

Hy gy 112 < Hyg-y* P-L2-8)alg-2) )/,

We can choose an integer N so large that
2 ’ ~ ’ s {
C2||)1—y‘]| /(2-2)alg*-g)y < N.
Thus, since 2-£>0 and g*-3>0,

N(2-2)a(g-8)y/C8 > ||y, -y 1%

(3.3)

Adding together the inequalities obtained from (3.3) by letting i take

on all values from 1 to N, we obtain

Hypeg=y* 12 < yg-y*] 1 282-p)algr-3)v/e? < o,

a contradiction. @

................

......
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It is shown in [39] that when I is compact, g is continuous on some open
set containing T, and 3g(y) # ¢ for all yer, there exists a

constant C such that ||r||<C for all yer, and neag{y), so that the
boundedness condition on the subgradients in Proposition 3.4 is easily

met.

3.2 Generating Lower Bounds

In this section we present a technique for generating lower bounds
for the multicommodity network flow problem. This technique involves
partially solving the Lagrangian dual problem using a subgradient
technique to update the Lagrange multipliers at each iteration.

Recall that the multicommodity network flow problem, MP, may be
stated as follows:

Minimize C ckxk

K

Subject to Ax = %, k= 1,... K (MP)

k

0<x < v, k=1,...,K

where
A is an m x n node-arc incidence matrix,
ck is an n vector of unit costs for k = 1,...,K,
rk is an m vector of node requirements for k = 1,...,K,
u is an n vector of mutual arc capacities,
vk is an n vector of individual commodity bounds for k=1,...,K,

k . . .
x 1s an n vector of decision variables for k =

T,0..,K,
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and K is the number of commodities. :

o b
Consider a Lagrangian dual problem for MP, denoted by DP: b

MAX  h(.) ",

A0 .

}

® h(x) = MIN[ T kK & Az K - u): (opP) I
k k o

Axk=rk (k = 1,...,K); Oixkivk (k = 1,...,K)] -

where X is an n vector of lagrange multipliers. -]

®
First we show that any feasible solution for DP is a lower bound =

RS

for MP. o

' Proposition 3.5 [12] 3
S -
Let X = (§1,§2,...,§K) be a feasible solution for MP. Let

"2,

X be a feasible solution for DP. Then h(3) < cx. =

Proof ]

© y
Since h{.) is a minimum, and since x is feasible for MP, h{7)« -3

- k=k — -zK \ : - . 4

IC x + A{Lx = u). Further since ; is feasible -

k k :

for DP and x is feasible for MP, then 3(CZx - u) < O .

- " A
Hence h(7.) < cx. = =

In addition to this result, Bazaraa and Shetty [12] have proved 2

that if MP has an optimal solution, then DP has an optimal solution, and "

that their optimal objective function values are equal., As a result, we '.

see that we may indeed solve (or partially solve) DP in order to obtain B

. a lower bound for MP. 2
In order to justify using a subgradient optimization technique for A5

.

solving DP, we must show that the objective function is concave and ::'

-y

develop an expression for a subgradient. :

2
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Proposition 3.6

. . . n R
The real valued function h is concave over /i = {A:XeR; 2 >0},

Proof

Let A" >0. Let 22 >0. Let 0 < a< 1. Then

h(ax + (1-a)32) = MINLT c*x® + (ar + (1-a)32)(Ix*-u):

k k
a2 tM(k=1,000 K050 < xK < VK (ke1,..0,K)]
= MIN[achxk + ak1(2xk-u)+(1-a)chxk + (1-u)kz(2xk-u):
k k k k

AxK = tM (ka1 .0 K)5 0 < XK < VK(k=1,..0,K) ] ‘

2_aMlN{:ckxk + 11(Exk-u):
k k

k

Ax = rk(k:1,...,K);D :_xk

< vk(k:1,...,K)]

v (1-a) MIN [rc®X + 32(oxkow)
K K

K Kk,

A = PUke, .., K000 < X VK

(k=1,...,K)] -

A 2 .
z ah’: ) + (1-a)h{;°). Hence h is concave over /.. @

Proposition 3.7

[

Let 7:2 0. Let x represent an optimal value of x corresponding N

to h(%). Then d = E;k-u is a subgradient of h at 7. :
"

Proof -
.

Let ) be any other point in A with corresponding optimal decision .
variable values x. Then f
~ ~ a Ak -:

h() = £ e iz x50 ;

k k rq

O

.

-
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<z 5K+ D ¥w) (since x is optimal)
k k

=1 K e A KW . (R D RTT RS« (G-t
k k k k

S R YO L R DLW O
k k

2
k
= (7)) + dla3).
Therefore d is a subgradient of h at ». ®
We now present our algorithm for computing lower bounds for MF.
Note that it is a specialization of the subgradient optimization
algorithm for this problem, and its convergence follows as a maximiza-

tion analog of Proposition 3.4.
ALGORITHM 3.2 LOWER BOUND ALGORITHM

Step 0 {Initialization

Let UB be any upper bound on the solution to MP, Set 1 -~ C: -
1 K
. - 4 ; - & = oo )
0; “q 2. Compute Yg h\AD) and let Xg (xU, g be the
corresponding optimal values »f the decision variables.

Step 1 Find Subgradient®

Set r, = °C xk-u. If r, = 0, stop with y. optimal.
i K3 i i

Step 2 {Move to New Point)

Set s, ~ oi(UB-yi)/||ni||2. Compute the jth component of

Ai+1 as:

(xm) « MAX {(}\-+sir|l)j y 01

—

J

R LA

- DR P,

P P L

. s s VW



N i a8 Saoh 0.0 Voh B
§ 4t e o W R v VI O ta'ate sl iakoYat ol tal Sak bt v R, el et tat o tal Sl el Nate ' A VN a1 [N S A% A% A%l S

2
W,
<y
N 27
=
-l
'
RS A ~ h(; i imal 1
N Compute Y1 h(Ai+1) and let X{41 be the corresponding optimal values
of the decision variables. Set 0iq ™ ai/Z. Set i « i+1. Return to
- step 1.
)
J‘
3.3 Generating Upper Bounds
p Here we describe a procedure for generating upper bounds for the
-2
‘ multicommodity network flow problem. This procedure is a specialization
of the resource-directive decomposition (RDD) algorithm using & sub-
N gradient direction. Ffirst we describe the general RDD procedure; then
- we present our specialization.
[-. h
/ The RDD technique produces a sequence of feasible solutions by
E distributing the mutual arc capacity among commodities in such a way
-; that the solutions to the K individual subproblems provide a solution to
' 4
the composite problem. At each iteration an allocation is made and the
resulting K (single commodity) minimum cost network flow problems are
solved. If the solution meets an optimality criterion then the
4
procedure terminates; otherwise, a new allocation is made, and the
Y process 1s repeatec.
- After introducing artificial variables, (ak), MP becomes:
’ ’
Minimize = c“x* + M I 12"
k k
Subject to AxS + a% = ¥ (k = 1,...,K)
z xk <u P
4 k
A Of_xkivk (k = 1,...,K)
akiO (k = 1,...,K)
[}
;
.
!
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® where M 1s a very large positive number and 1 is an m vector of all y
ones. K
Let us restate the problem as: y
u‘. Minimize z(y1,...,yK) X
. 1 { k .
Subject to z(y',...,y%) = 1 2%(y%) (RP) :
K .
k
ly = wu
K
0 :_yk i_vk (k = 1,...,K) X
where zk(yk) = MIN {ckxk*ﬁlak: Axk+ak:rk; Q:x%iyk; a%iO} for k = X
1,...,K. We shall refer to this formulation as RP. Note that zk(yk) = y
MAX{rk;k-ykvk:;kA-pﬁick;;%iﬁl:;kzp}, by duality theory. ;

In order to justify using & subgradient optimization technique we
must sho~ that z(y1,...,yK) is a convex function and develop an
expression for a subgradient.

Proposition 3.8 [52]

The real valued function z is convex over

Y =z {y1,...,yk:)LO:...:yKiO}.
Proof
-1 -K . K :
Let (v ,...,y JeY and (v ,...,v )cY. Select o so that ‘

O<g<1. Then

-1 ~1 =K ~K
2[ay +{(1-ady ,...hay + (1-g)y ]
-k , ~k
= Zk[g)k-o-\“-g)) ]
k 4
= I MAX rkLk- [a;k + (1-0)yk]‘k:
k
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, k - -
= § MAX{a[r Lk-yk\k] + (1-o)[rkLk-yk»k : ’

k

LkA- »k_<_ck; u ki‘ﬁ; v k10}

< ol MAX {rkpk-§kvk:

k

va-vk:pk; ukjnl; vkzp}

-~ L4
+ (1-a) T MAX{ rkpk-ykvk:
k

ukA-\kjpk; ukgﬂl; vkzp}

= 6z2(V yeeeyy ) + (1—a)z(y1,...,y ).
Therefore z is convex over Y, @

Proposition 3.9 [52]

Let y = (}1,...,§K)5Y be any allocation and let (Lkgfk)

denote the corresponding optimal solution to zk(§k) for k = 1,...,K.

Then r = (-31,...,-\‘) is a subgradient of z at y.

Proof

let y = (y1,...,yK)cY be any allocation and let (pk,\k) denote the

corresponding optimal sclution to zk(yk) for k = 1,...,K. Then:

k k k k k-k -k-k

z(y1,...,y“)-z(§1,...,§K) = I (ree-yv)-Z(rp=-yv)
k k ’

-k -k k-k =k-k '
rk» -yk» ) - (ry -y v) .
k |

>

(
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Hence -  is a subgradient of z at y. ®

Recall that the subgradient optimization alqorithm requires a
technique for projecting a point onto the feasible region. We now
explore the projection operation for this problem.

Let us denote the feasible region for RP by Q. That is,

Q= {(y1,...,yK): éyk = u30 < yk j_vk(k z1,...,K)}. Given an

arbitrary allocation, (§1,...,§K), to project it onto £, we solve :

i K, =1 ¥ \
MINTD Oy yeenyy D=0y yeeeyy D]t yeqs

k =k,2,1/2
\v-)"/)
g 3

-

Curle

Note that this problem decomposes on j. Hence, for each arc j, we
solve:

k.2 3
MIN&:(;S—)EI e yj = vy 0 < )j < v; i (k=1,...,K) 5.
K k

We will denote the above projection problem by P. The following
algorithm [52] is used to solve P for any arc, j.

ALGORITHM 3.3 PROJECTION ALGORITHM

Step O (Initialization)

k

If u. > Vj or Uj < 0, terminate with no feasible

Ik

solution. Otherwise set 1 « 1; r«2K; L+ vg; R«0. Compute

Kk
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the breakpoints, bi (i=1,...,2K), as ;; and ;S-vj (k=1....,K).

Order the breakpoints so that b1 i,bz :-"'f-bZK'

Step 1 (Test for Bracketing)

If r-1 =1 go to step 4; otherwise, set m*[(l-o»r)/z]I where [K]I

is the greatest integer < K.

Step 2 (Computer New Vaolue)

wTnr =K k
Set C «~ © MAX{MIN[yG-y , v.], 0}
; YV Vi)

Sten 3 (Update’

1f C=c then set J «y» and go to step 5. If C>c then
set l-m: L<C: and go to step 1. If C<c then set r«m; R.L: and o to

step 1.

Step 4 !Interpolate! 4
L - - -
Set 2*<b +[(b -b,)(c-L)]/(R-L).
Step 5
Compute the feasible {projected) allocation, y?, for ’
k=1,...,FK 1n this way:
k . -k k
v, if o+ -V
i =57
&
k -k . =k k -k
.= =¥ if y . -v x*<y.
YJ YJ ’ YJ j iYJ
0, if >y
J
4
Terminate with the feasible allocation for arc j, (y},...,y?).
An upper bound algorithm using the subgradient procedure is now
s

presented. Its convergence is a direct result of Proposition 3.4.
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ALGORITHM 3.4 UPPER BOUND ALGORITHM

Step 0 ’lInitislization®

Let LB be any lower bound on the solution to MP. Choose a set of
initial allocations, yg = (y;,...,yg) by setting y; « PLO/KYI(W))
for k = 1,...,K. Set kO ~ 2; 1 + 03 UBex,
Step 1 Find Subgradient)

Let (p?,\:) solve zk(yi) for k = 1,...,K. Let

1 K. k, k . .
ni+(—wi,...,—xi). Set UB«:z (yi). If -, = 0, then terminate witn
z(yi) optimal.

Step 2 ‘Move to New Point)

)
Compute s, - }itz(yi)-LB]/llﬁi|| . Set y, o~

'y «g - Lo PIL, S
PL)i sili]. Set Py 2l i+1. Return to step 1.

We now 1nirocduce a heuristic modification of the upper bountd

algorithm, which has produced better results on our test problems.

;1 K 1 K.

Recall tna: - ‘- 4....=.") is a subgradient of z at (y ,...,y

"

Then for each arc j, the vector

e e, .eA,...,ﬁ(k_1)n+jeJ)

"

serves to isolate the components of n associated with the commodities
flowing on arc j. For each such arc j we compute an individual step

size at iteration i as

s,(3) =0 Lzly Loy’ -2/ (D117

where z* 1s approximated by LB.
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Using this idea we now present our heuristic upper bound

algorithm,

ALGORITHM 3.5 HEURISTIC UPPER BOUND ALGORITHM

Step 0 (Initialization)

Let LB be any lower bound on the solution to MP. Choose a set of
initial allocations, Yg = (yé,...,yg) by setting yg « P[(1/K)(W)]
for k = 1,...,K. Set k0+2; 1<0; UB<+=<<.

Step 1 (Find Subgradient)

Let (Lt,\t) solve zk(ys) for k = 1,...,K. Let g =

k

(v), . ,ovF). set UB«zzX(y5). If .20, then terminate with
1 1 Kk 1 1

z(yi) optimal.

Step 2 {(Move to New Point)

. 1 K . 2 ,
Compute si(J)«)i[z(yi,...,yi)—LB]/|Iﬂi(J)II for each arc j.
Set § *—diag(si(1),...,si(n)). Set
r -

(7))

Wy

w1

1 K 1 K ..
Set (yi+1,...,yi+1)*P[(yi,...,yi)—sni]. Set Ai+1+xi/2; ieist.

Go to step 1.

. (O
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3.4 The Alqorithm

In this section we present the composite algorithm for solving MP.
This procedure involves partially solving DP for successively better
lower bounds and partially solving RP for successively better upper
bounds on the optimal objective function value, The algorithm
terminates whenever {a) the solution to DP can be shown to be an exact
optimum; (b) the solution to RP can be shown to be an exact optimum; or
(c) the greatest lower bound and the least upper bound generated are
within a prescribed tolerance, ¢ . In case (c), the best solution to RP

i1s presented as a guaranteed c-optimal solution.

ALGORITHM 3.6 COMPLETE ALGORITHM

Step C (Initi1alization’

Let c-termination tolerance ‘0<:=<1); NOLB-number of lower bound
iterations to perform on each pass; NOUB+number of upper bound
iterations to perform on each pass; [B+-ex; UB+=,

Step "Lower Sound’®

Perform NJ_B iterations of the lower bound algorithm (Algorithm
3.2). Let LB denote the best lower bound attained so far. If Algorithm
3.2 terminates in step 1 with an exact optimum, terminate with that
solution optimal for MP,

Step 2 (Upper Bound)

Perform NOUB iterations of an upper bound algorithm (Algorithm 3.4

or 3.5). Let UB denote the best upper bound attained so far. 1If

-

Algorithm 3.4 terminates in step 1 with an exact optimum, terminate with

that solution optimal for MP,

. -

TR . S . e : PR
LTI SO s e e, . -

.t A-.' - e et -’
A T O R
MU IR S T T Y U WP Sk S RV R

ot
BT T

- ." ST re N . 4: “ -'. . !" R --' LA -"' .-..‘A. ~".-~ .-- . . - - . “, ., .l
- -SSP ST AP SR RPN TR T LT e




.................

Step 3 (Check for Termination)

If ¢(UB)<LB then terminate with UB a guaranteed e-optimum;

otherwise, go to step 1.

In this algorithm the best solutions for the lower bound and upper
bound problems at each pass are retained and used as starting solutions
for the respective problems on the next pass. The details of our

implementation are presented in Chapter 4.
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COMPUTATIONAL EXPERIMENTATION 3
N
o This chapter provides descriptions of our computer implementation
of Algorithm 3.6 and of the test problems used. Our code, EVAC, uses
MODFLO [1] to solve the single commodity minimum cost network flow 3
subproblems which arise in Algorithm 3.2 and in Algorithm 3.5. MODFLO .
is a8 set of routines which may be used to solve a network flow problem or :
to reoptimize a previously solved problem after changes are made in some
of the data. MODFLO, which is based on NETFLD [52], allows the user to
change bounds, costs, and/or requirements and then reoptimize from a ;
basis which was optimal for the original problem. .’
We tested £VAC on 22 randomly generated multicommodity network L:
flow problems and on one test problem which was specially structured to
be solved by EVAC. The test problems ranged in size from 22 to 754 .
nodes and from 53 to 1,102 arcs with from 0 to 599 linking constraints i
and from 3 to 20 commodities. The equivalent LP sizes are between 232 ;
and 8,904 rows and between 470 and 12,111 columns. The 22 randomly 3
generated problems were created using MNETGN [5], a multicommodity
network problem generator. The problems were solved by EVAC and by MONF d
[51], a multicommodity network flow code which uses a primal parti- _E
tioning algorithm. Solution times are compared and conclusions are

drawn concerning the relative effectiveness of the techniques.
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4.1 Description of the Computer Programs

In this section we present a description of MCNF and EVAC, the two
computer codes used in our experimentation. Both programs are written

in standard FORTRAN and have been tailored to neither our equipment nor

our FORTRAN compiler.

4.1.1 MCNF

MCNF was developed by Jeff Kennington at Southern Methodist
University, Dallas, TX. It is an incore multicommodity network flow
problem solver which uses the modification of the revised simplex method
known as the primal partitioning algorithm [36]. 1In this algorithm the
basis inverse is maintained as a set of rooted spanning trees (one for
each commodity) and a working basis inverse is maintained in product
form. The working basis inverse has dimension equal to the number of
binding linking constraints corresponding to the current basis. The
initial basis is created using a multicommodity variation of the routine
used in NLTFLO. A partial pricing scheme is used; the pricing tolerance

is 1.E-6 and the pivct tolerance is 1.E-8.

4.1.2 EVAC

EVAC is our implementation of Algerithm 3.6 for solving the
multicommodity network flow problem. Note that Algorithm 3.6 alternates
between generating lower bounds using Algorithm 3.2 and generating upper
bounds using Algorithm 3.5. Since both the lower bound problem (DP) and
the upper bound problem (RP) decompose on commodities, EVAC maintains
only the information concerning the current commodity in main memory.

The problem data and most recent bases for all the other commodities are

------------

)
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kept on peripheral storage. At the user's option EVAC stores in ma:in
memory as much of the current set of allocations, (yl,...,y:) and
current dual variables (-»1,...,-»:) as desired. All our test
problems (with the exception of Problem 23) were solved with all the
allocations and dual variables in core.

Both the lower bound routine and the upper bound routine use
MODFLO as the optimizer for the single commodity subproblems. MODFLO

uses the same partial pricing scheme as NETFLO and drives the flow on

; artificial arcs to zero using the Big-M method. The Big-M value that
Y was used for our test problems, except as noted in Table 4.1, was 7
times the largest unit cost in the given problem. At subsequent

iterations, initial bases for each commodity are just the optimal bases

for the previous set of Lagrange multipliers. A basis for the upper-
bound problem is generated by constructing a feasible basis from the
previous optimal basis using the rules described in [1].

In practice we did not update the multipliers for the step sizes
(;i in Algorithm 3.2 and 7, in Algorithm 3.5) at every iteration, but
only when the improvement in the objective function was too small. As
Algorithm 3.2 requires a finitie upper bound {for calculation of the
step size in step 2) we used an initial value of UB « 1.1%LB.
Thereafter for UB we used the best upper bound generated so far. The
parameters and tolerance used in all our testing were these:

e = .90

NOLB 5

NOu8 5

Pricing Tolerance = 1.E-2

Snd,




4.2 Description of the Test Problems

The multicommodity network problem generator, MNETGN, was usec to
create 22 random test problems. We modified the MNETGN output so that
every arc appeared in every commodity's subproblem by adding arcs witn
upper bounds of zero where necessary. The test problem ranged in size
from 22 to 754 nodes and from 53 to 1,102 arcs with from 0 to 599

linking constraints and from 3 to 20 commodities. The equivalent

®
sizes are between 232 and 8,904 rows and between 470 and 12,111 coiu .
The number of linking constraints corresponds to a wide variety of
problems from pure network problems (no linking constraints) to protlems .
in which over 75% of the arcs are included in linking constraints.
Problem 15 was provided by Lt. Col. Dennis Mclain, the Assistant
Director of Operations Research at the Military Airlift Command locatec o
at Scott Air force Base.
4.3 Summarv of Computational Results .
All the testing (except for Problems 15, 21, and 23) was donr o &
COC 6607 at Southern Methodist University, using the FTN compiler wit®
the optimization feature enabled. Except for Problems 7 and I3, & v
guaranteed ¢ -optimum was obtained for each problem with ¢ > 90%.
Problem 7 experienced convergence difficulties when run using EVAC.
Problem B8 was created from Problem 7 by increasing the linking .
constraint bounds by 10%. As indicated in Table 4.1, this slight
modification enabled EVAC to solve the problem easily. We limited the
number of lower bound iterations and upper bounds iterations to 10C. Y
»
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even though Problem 7 had not achieved 90% optimality by that point.
Because of this the solution times for Problem 7 are given in Table 4.1
but are not included in the summary data.

Problem 23 was created to allow us to test EVAC on a relatively
large problem. This problem {(with 8,904 LP raows and 12,111 LP columns)
was too large for MCNF to solve in the available memory, so we were not
able to compare solution times for the two codes on this problem. In
addition, due to the memory limitations on the CDC 6600, we were forcec
to use a CDC 205 to test Problem 23. For this reason the times for
Problem 23 are included in Tables 4.1 and 4.2, but are not included 1n
the totals and summary information. Since the testing on the CDC 205
involved a real-dollar expense, we were satisfied to stop when a 75%
optimum was attainmed. The test runs for Problems 15 and 21 were made o~
a COC Cyber 73. But since both the £VAC and MCNF runs for these

roblems were made on the Cyber 73, the totals and summary data 1nclude
the times for Problems 15 and 21.

Details of the test problems are given in Table 4.1. The times are
in CPU seconds and exclude the time required to input the problem da‘sa
and print the sclution reports. Table 4.1 also presents a comparison of
the times required for MCNF and EVAC to solve each problem., In order to
present a meaningful comparison of the solution times for MCNF and EVAD,
we also present the solution times for EVAC exclusive of the extra 1/0
requlired to maintain the costs, bounds, and old bases for the sub-
problems on peripheral storage. Since MINF maintains all this informa-
tion i1n main memory, this seems to be the most reasonable way of
comparing timing statistics. The column titled "Guaranteed % Optimal”

gives the bes! lower bound generated by EVAC as a percent of the best
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upper bound generated by EVAC. The column titled "Actual % Optimal"
presents the actual optimal objective {as obtained by MCNF) as a percent

of the best upper bound generated by EVAC.

Table 4.2 provides the details of the times required by EVAC to

perform various steps of the algorithm., The column titled "% of Time in
Other" for the lower bound computations shows the time required for such
activities as computing the Lagrange multipliers, updating the unit
costs to reflect these changes, computing the resulting dual variables,
and various bookkeeping activities. The corresponding column for upper
bound computaticns reflects such activities as calculating the dusl
variatles, testing the termination criteria, and various other short
computations.

Table 4.3 summarizes the time comparisons graphically. The
problems are grouped by number of commodities, as thev are 1~ Tables

and 4.2,

;.4 Analveis of Results

It seems clear from Tables 4.1 and 4.3 thac EVAC severely
dominates MINT whenever the number of commodities is small, This 1g due
to the fact that, for EVAC, quite a bit of additional overhead is
involved in alternating between commodities. This overhead is not just
a result of 1/0, although that is a great deal of it, but is also due to
the set-up time required for activities such as constructing a new
feasible basis from an old basis and calculating the resulting dual
variables. MCNF, on the other hand, is primarily driven by the number
of binding linking constraints in the optimal solution. This 1s because

MCNF seeks an exact optimum.




PPN o
P UL PR TP A )

Letting T .ZVAD ' denole the averags '1me reg it~ . 744
] -

“exclusive of 1/0°, and 1 MINT denote the averade ' .me Tel.,res @,
MCNF, we can express the following relationships:
for the 3-commodity test problems,
TCEVAC) = .354 * TIMONF),
For the 4-commodity test problems,
TUEVAC) = .469 * TMCNF).
For the 5-commodityv test problems,
TIEVAC) = .666 * TIMCNF).
And for the test problems with & or more commodities,
TIEVAT: = ,975 * TIMINF).

It should also be noted that EVAC is capable of solving larger
problems than MINF. This is due to the fact that EVAC stores only one
copy of the network defining data in main memory, where MINF requires
one copy for each commodity. Also, EVAC maintains in main memory the
current basis, cost and bound data for only one commoditv at a time.
Thus, for a K-commodity problem, EVAT uses on the order of 1/K the main
memory requlired by MINF,

Note that the entries in the "Guaranteed % Optimal" and "Actual %
Optimal" columns of Table 4.1 are quite close. This indicates that the
sequence of lower bounds converged to values very near optimality. In
addition, from Table 4.2, we see that the lower bound iterations are
typically less time consuming than the upper bound iterations.

It is worth observing that EVAC was designed for very large
problems which would never be solved to optimality. Even if a probler
does not converge to within the requested tolerance in a prescribed

number of iterations, EVAT always provides a feasible solution which is
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a guaranteed c¢-optimum for some ¢ >0, In contrast, MCNF provides only an
upper bound on the optimum objective value, with no indication of how
close it 1s to optimality until an exact optimum is actually attained.
We conclude that EVAC works extremely well in obtaining a
guaranteed e¢-optimum for the multicommodity network flow problem. While
it is not as "robust" as the simplex-based MCNF, it is a good choice for

the class of problems for which it was developed, the very large

casualty evacuation models.
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CHAPTER V

SUMMARY AND CONCLUSIONS

This chapter presents a summary of the results reported in
Chapter IV and shares conclusions regarding the relative effectiveness

of our technique. It also includes ideas for further investigation in

the area.

5.1 Summary and Conclusions

Algorithm 3.6 describes our technique for finding an e-optimal
solution for the multicommodity network flow problem. Our technique
differs from other approaches to the problem in that, rather than
solving the multicommodity problem directly, we compute sequences of
lower and upper bounds on the optimal objective function value,
terminating when the bounds are within a prescribed tolerance. Both
the lower and upper bound algorithms use a subgradient optimization
technique and both decompose on commodities so that only a single
commodity minimum cost network flow optimizer is required. At each
iteration of the lower bound routine (Algorithm 3.2), an initial basis
is generated from the previous optimal basis by modifying the costs to
correspond to the new Lagrange multipliers, and updating the dual
variables. At each iteration of the upper bound routine (Algorithm

3.5), an initial basis is constructed from the previous optimal basis
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using the rules described in [1] to restore feasibility {if
necessary, after changing the bounds to correspond to the new
allocations.

The subgradients for the lower bounds are computed to be the sum
of the flows on the mutually constrained arcs minus the associated
mutual arc capacities. For the upper bounds, subgradients are
computed using the dual variables obtained when solving the single
commodity network problems.

Our computational work included solving each one of 23 problems
twice; once using MCNF, a primal partitioning code, and once using
EVAC, our implementation of Algorithm 3.6. 0On the average LVAT
required only 65% of the time required by MCNF (ignoring 1/0;. EVAC's
performance was far superior on the problems with fewer commodities
and was not as impressive on the problems involving many commodities.
In addition EVAC required on the order 1/K the amount of main memory

as MCNF for a K-commodity problem.

5.2 Areas for future Investigation

Algorithm 3.6 involves two more or less independent processes.
That is, there is no reason why the lower bound generator [Algorithm
3.2) and the upper bound generator (Algorithm 3.5) could not proceed
independently, stopping now and then to exchange their best bounds and
test for optimality. Hence it appears that this procedure is
well-suited to exploit the benefits of a parallel processing
environment. In addition to the partitioning of the technique into
two separate procedures, within each of these procedures the

decomposition by commodities could take advantage of a parallel

AT e »'/-'_ .".-. .-’,'_‘ T
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processing scheme as well. It would seem reasonable to expect such a
scheme to speed up the execution time considerably, especially when
solving a very large problem,

There is also room for additional experimentation with the step
sizes, specifically with the multipliers on the step sizes. Perhaps a
scheme in which the multipliers were allowed to be reset to their
starting values a finite number of times would speed up convergence.
One might reset these multipliers whenever the improvement in the
sequence of upper (lower) bounds fell below some tolerance. This
would have the effect of restarting the algorithm at that point, but
with a far better "starting solution".

In addition this problem has a multiperiod structure. Since the
network is replicated for 60 one day time periods, it might be
advantageous to exploit this structure using a forward simplex

approach.
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66 CHAPTER 2

Networks with Side Constraints:
An LU Factorization Update

Richard S. Barr, Keyvar Farhangian, Jeffery L. Kennington

An important class of mathematical programming models which are fre-
quently used In logistics studies is the model of a network problem having
additional inear constrants A specialization of the primal simplex algonthm
which exploits the network structure can be applied to this problem class. This
speciaiization mantains the basis as a rooted spanning tree and a general
matrix called the working basis This paper presents the aigonthms which may
be used to maintain the inverse of this working basis as an LU factonzation,
which is the industry standard for general linear programming software Our
specialized code exploits not only the network structure but also the sparsity
chiaractenstics of the working basis Computationai expenmentation indicates
that our LU implementation resuits in a 50 percent savings in the non-zero
o elements in the eta file, and our computer codes are approximately twice as tast

as MINOS and XMP on a set of randomly generated multicommodity network
flow probiems

ACKNOWLEDGEMENT

This research was supported in part by the Department of Defense under
Contract Number MDAS03-82-C-0440 and the Air Force Office of Scien-
tific Research under Contract Number AFOSR 83-0278.

Py

(ERSET A

\I.,,--_‘;”-»' e '-{\,'4“'.‘:1_'(~ N T e S U SR R L IO

-
1% el . RMEEGLE A B S S R T RPN AL I N ~ “\\ -
e et P AE NP NN WP NSNS NN NP AR A RN RNy S AR antos’ f..-.-nx‘l-.-;-n-‘_:r_n’u.‘x‘-c..j:‘




Tt tat . A R A R B D N &
Sad arnsnds

67

Good software for solving linear programming models is one of the
most important tools available to the logistics engineer. For logistics stud-
ies, these hnear programs frequently involve a very large network of
nodes and arcs, which may be duplicated by time period. For example, pt
nodes may represent given cities at a particular point in ime while arcs
represent roads, railways, and legs of flights connecting these cities
Some nodes are designated as supply nodes, others demand nodes,
while some may simply represent points of transshipment. The mathemat-
ical model characterizes a solution such that the supply is shipped o the
demand nodes at least cost while not violating either the upper or fower P
bounds on the flow over an arc.

If the main structure of a logistics problem can be captured in a net-
work model, then the size ot solvable problems becomes enormous
Hence, more realistic situations can be modelied that would otherwise he
outside the domain of general linear programming techniques. For exam-
ple, one current fogistics planning model involves 200 nodes and (365 .
days/yr) (30 years) = 10,950 time perods to give over 2,000,000 con-
straints. Network problems having 20,000 constraints and 20,000,000
vanables are solved routinely at the U. S. Treasury Department.

Unfortunately, the pure network structure may require simplification of
the problem to the point that key policy restrictions must be omitted The
work presented in this study builds upon existing large-scale network .
solution technology to aliow for the inclusion of arbitrary additional con-
straints. Typical constraints include capacities on vehicles carrying differ-
ent types of goods, restrictions on the total number of vehicies available
for assignment, and budget restrctions. The addition of even a few non-
network constraints can greatly enhance the realism and usability of
these models. Our approach exploits —to as great an extent as possible — -
the traditional network portion of the problem while simultaneously en-
forcing any additiona! restrictions imposed by the practitioner.

For general inear programming systems, the most important compo-
nent is the algorithm used to update the basis inverse Due to the excel-
lent sparcity and numerical stability charactenstics, an LU factonzation
with either a Bartels-Golub or Forrest-Tomlin update has been adopted .
for modern linear programming systems. For pure network problems, the
basis is always triangular and corresponds o a rooted spanning tree The
modern network codes which exploit this structure have been found to be
from one to two orders of magnitlude faster than the general linear pro-
gramming systems. In this paper, we have combined these two powerful
techniques into an algorthm for solving network models having additional .
side constraints _

Let A be an m x n matrix, let ¢ and u be n-component vectors, and let {
b be an m-component vector. Without loss of generality, the linear pro-
gram may be slated mathematically as follows:




T.._V'.‘ L AN
S

68

H. minimize cx (1)
subject lo: Ax=Db (2)
D<x=<u (3)

The network with side constraint model is a special case of (1)-(3) in
which A takes the form

where M is a node-arc incidence matrix.
If m = 0, then (1) — (3) is a pure network problem.

1.1 Applications

There are numerous applications of the network with side constraint
model. Professor Glover and his colleagues have solved a large pas-
senger-mix mode! for Frontier Airines and a large land management
mode! for the Bureau of Land Management (see [7, 8]). A world grain
export model has been solved to heip analyze the port capacity of U. S.
e ports during the next decade (see {2]). A cargo routing model is being
used by the Air Force Logistics Command 1o assist in routing cargo
planes for the distribution of serviceable spares (see [1]). Lt. Col. Dennis
McLain, has developed a large model to assist in the development of a
casualty evacuation plan in the event of a European confiict (see [14]) A
Nationai Forest Management Model has been developed to aid forest

e managers in long term planning for national forests (see [10]) In addition,
work is currently underway which attempts to convert general linear pro-
grams into the network with side constraint model (see [4, 16]). ;
.f_:
1.2 Objective of Investigation -
< Due to both storage and time considerations, the basis inverse is main- -
tained as an LU factorization in modern LP software (see [3, 5, 15)). The ®
objective of this investigation is to extend these ideas to the primal parti- ~
tioning algorithm when applied to the network with side constraints N
model. :
-
. 1.3 Notation “
The i"component of the vector a will be denoted by a, The (i)™ ele- )
ment of the matrix A is denoted by A, A(i) and A[i] denotes the i column -

and i" row of the matrix A, respectively. 0 denotes a vector of zeroes, 1
denotes a vector of ones, and @* denotes a vector with a 1 in the k™
position and zeroes elsewhere. Sigma is used to denote the scalar sig-
num function defined by
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1,fy>0
aly)= { 0ity=0
-1, ify <0

The identity matrix is given by “i".

il. THE PRIMAL SIMPLEX ALGORITHM

We assume that A has full row rank and that there exist a feasible
solution for (1)—(3). Given a basic feasible solution, we may partition A, ¢,
X, and u into basic and nonbasic components, that is, A =[BIN], ¢ =
[cBicM]. x = [xBixN], and u = [uBiM]. Using the above partitioning, the
primal simplex algorithm may be stated as follows:

PRIMAL SIMPLEX ALGORITHM
0. Initialization. Let [xBixN) be a basic feasible solution.
1. Pricing. Let & = ¢%B~'. Define

¥ = {in® =0 and & N(i) > cl},
¥ = {inxN = uN and & N(i) < cl'}.
If ¥ U g2 = 0, terminate with [xBix™] optimal; otherwise, select k €

¢y U ¢, and set 8« 1 if k e ¢y and & « —1, otherwise.
2. Ratio Test. Set y «— B~ 'N(k). Set

8
Ay~ U(";T) = 8{')5_ °‘}
byl
B_ B
82 —ofy) = | M
iyl
Set A « min {A,, A, ul).
If A # =, then go to 3; otherwise, terminate with the conclusion that the
problem is unbounded.
3. Update Values. Set x}! «— x{ + A8 and x® « x® — Ady. If A = ul, re-
turn to step 1.
4. Update Basis Inverse. Let

¥a = {j:x? = 0 and ofy,)) = 8}
Ya = {i:x® = u? and -aty,) = 8}.

Select any € € ¢35 U 4. In the basis, replace B(¢€) with N(k), update the
inverse of the new basis, and return to step 1.
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IIl. THE PARTITIONED BASIS

The network with side constraint model may be stated as foliows:

minimize ¢'x' + ¢2x? (4)
subject to: Mx' = b’ (5)
Sx' + Px? = b? (6)
O=<x'=u' (7)
0=x?=u? (8)

We may assume without loss of generality that,

(i) The graph associated with M has n nodes and is connected (i.e.,

there exists an undirected path between every pair of nodes)

(i) [SiP] has full row rank (i.e., rank [SiP] = m).

(iii) Total supply equals total demand (1.e., 1b' = 0).

Since the rank of system (5) is one less than the number of rows, we
add what has been called the root arc to (5) to obtain

Mx' + ea = b'

where0<sa=s0and1=<=p=n.
Then the constraint matrix for the network with side constraints mode!

becomes
i i &P
A= [Mi__lf_]

| |
and A has full row rank StP

it is well-known that every basis for A may be placed in the form

N

where T corresponds to a rooted spanning tree and
[__T_‘_‘_t_T_‘_‘QO_‘_‘D_T_‘_‘_ i_:_T_‘_‘_C_Q:‘___]

(10)

where Q = F — DT-'C. The objective of this paper is to give algorithms
which maintain Q™' as an LU factorization.
IV. THE INVERSE UPDATE
Recall that the partitioned basis takes the form

f,el nonkey

——
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Let

and let

The inverse update requires a technique for obtaining a new Q™' after a
basis exchange Let B, L, B, and Q, denote the above matrices at itera-
tion i. Then we want an expression for Q%) in terms of Q. The transfor-
mation takes the form

B._+11 = EB.——‘ (1 1)

where E is either an elementary column matrix or a permutation matrix.
Let E be partitioned to be compatible with B. That is,

E = _E..‘__i._E_?.] In
E3 ! E4 . }m
n m

By examining the (2.2) partition of B3}, we obtain
QLY = (B4 - EaT7'C)Q5! (12)

In determining the updating formulae, we must examine two major
cases with subcases.
Case 1. The leaving column is nonkey. For this case, E takes the form

and (12) reduces to Q) = E.Q™ .

Case 2. The leaving column is key.

Lety =@ T7'C.If y # 0, then the k™ column of C can be interchanged
with the " column of T and the new T will be nonsingular.

Subcase 2a. ¥ # 0. Suppose y # 0.

Then €4 — E; T~ C reduces to

R= -eT-'C —row | (13)

1 I

4 =RQ ' Case 1 is applied to complete the update.
Subcase 2b ¥ = 0 For this case no interchange is possible, the entering
column becomes key, and Q34 = Q.

LU

[}
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V. AN LU UPDATE
Let
—T
G
| | : 0
J"_ -1
U= L 1 L
0 i
i
and
I 0
c- T
o : e|+1 T'
i |
: : : i
| o |

Matrices of the form given by U' and L' are called upper etas and lower
etas, respectively. Suppose we have a factorization of Q="' in the form

Q'=UWE .. UTFFT L F (14)

where F', . . ., F> are a combination of row and cofumn etas The right
side of (14) is referred to as the eta file where only the non-identity rows
and columns are stored. Suppose that the k™ column of Q is replaced by
O(x) to form the new m by m working basis G This secuon presentc
aigonthms which may be used to update (14) to produce Q- inthe same
form.

5.1 Nonkey Column Leaves The Basis
if k=m, then let B =F* . .. F'Q(k), let

LM = oo
|
:VBm
.
and let
~ } ‘Bv
0= {1 1
| -
__...1-...@1“.:.!_
1
b
PR PP PR YA SO R S R R -.’.-u'.:.m.' \.”'3."\"\.' A A s e
Py — \ \ ~ -
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We will show that ' =U' . . U™ 'U™L™F . . . F".
If k < m, then let R* = | and

Q '=U". . URUST D UTP .. F.

73

(15)

We next define a new upper eta, U, and a new row eta, R**", such that

(16)

(17)

(18)

(19)

RKUK#\ = GKRK-H.
Substituting (16) into (15) yields
Q'=U'. . USDHR*TURZ L UTEE LR
We again define two new eta’'s, U"*"' and R**2, such that
Ruuumz = D"“R“Z.
Substituting (18) into (17) yields
O-l = U1 o UkaDk¢1Rk¢2uk43 O U™Fs F‘.
Repeating this process eventually yields
Q'=U'". . UT. .. U"RTFS .. F
Let y = R™Fs . . F'Qk). let
P |
" s ettt -1
L™= A VN
Fo———————— ==
D= Yeer/we |
b b
|' =¥/ Y |'
and let
[ 4 1
I |
: = Yr-1 ‘
~ _———b— e
um= b :
fe——————f—
: |
Then U™(™y = &* and we will show that Q-'=U" ... U~ '0* ...

UmL™R™Fs . F".

We now present the algorithm which updates the LU ;\epresentation of
Q' when the leaving column is nonkey Assume that Q(k) is replacing
Q(k) in the working basis

W
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ALG 1. LU UE\DATE FOR NONKEY LEAVING COLUMN N
® 1. Set p—F° . . F'Q(K). -
2. Hk=m, seth—k Rt«1 goto 4. LS
3. Set L'“<—l where | is m by m.
Set I:,,,m «— 1/Bm.
Set U™« |, where | is m by m.
SetU - - B, fori=sj<m.
° Stop with Q-'=u"...umOmimEs LR
4. Seta «— R‘[k]U“‘(l’+ 1)
Set R”‘ <R
Set Rk (+1 ¢ Q.
Set U‘ Ui,
Set UK e T 0
(R'U”‘ = U‘R“‘)
* Set € « £+1.
S ité<m goto4d, N
(Uk*l ) Um = U ) Um—1Rm')
Set g « R’“p
6. Set L™ « |, where | is m by m.
) Set ka « 1/8..
Set Ly « ~B/B.. fork<j=m.
Set g’“ « |, where | is m by m.
Set Ule—~-B, for 1 ==k
Sel ka «— 1 ~ ~ ~ ~
Stop with @' =U" . .. U0 ' ... U"L™R™Fs . . F".
® We now presenl the justification tor step 3 of ALG 1. For k =m. we
clam that Q7'=U" ... U™'UTLFE . Note that Q' Q(m) =
u'. L umamimg. But by construction U"’L’"ﬂ e™. Consider
Proposition 1.
. Let 8 be any m-veclor and E' be any columneta. If B, = 0, then E' ﬂ B
By Proposition 1, U' . . . U™ 'e™ = e™. Therefore, Q™ 'Q(m) = e™. For
1sé<miety= FS F Q(e). By construction y, = Ofor € < j= mand
t+}

Q(m), then step 3 of ALG 9 produces Q'
We now present a theoretical |ustmcat|on for step 4 ot ALG 1.

v. = 1. By Proposition 1 u
of U,

U™ 'U™L™y = y. By the construction

U',wehaveU'. .. U‘y = e’ Therefore, if the leaving column is
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Proposition 2.
Let
I b
UPH! = ____i E andRP = |-l _J] «rowe
| a N S
| ! i
| } I
T
column €
where € # €.
If
LR LR
ue = | @ ! and RP*' = B «— row ¢*
R 1
T
column ¢
where
~ [o, iti=e
" n, otherwise, and
g - { ny. iti=¢€
' ly, otherwise,

then RPUP*" = UPRP*".
Proposition 2 is a theoretical justification for step 4 of ALG 1 The propo-

sition to follow shows the precise structure of R™FS . F'Q Consider
Proposition 3.
LetU*=Fs _ F'Q. It U=R™U", then
~ o Ui i#k
g = (UK
g e", otherwise.
We now present the results to prove that Q' =U' . U U

UmL™R™Fs .. F,
Proposition 4.
'L Uk OMEMRTEE L F'Q(K) = e
Proposition 5.
U utUe L OmI™RTFS L F'QU) = @' for 1 # k.
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By Propositions 4 and 5, we have

Corollary 6.
Q'=u'. . U0 OTU™RTFS R
Hence. ALG 1 produces the updated working basis inverse.

5.2 Key Column Leaves The Basis

In this section, we present an algorithm for updating the working basis
inverse to accom,phsh a switch between a key column and a nonkey
column. That is, @ = RQ ™ 'where R is given by (13) and

Q'=U'"..  UTF .. F. (20)

We wish to obtain @~ ' in the same form as (20)

To accomplish this update, we beginwith Q™' = RU' . . . U™F®
We apply Proposmon 2 to RU' creating the factorization Q’ =U R2U‘
S UTES R ' We continue with the application of Proposition 2 unti! we
obtan Q' =0'. . U* RN UTFS L F Proposition 2 does not
apply to R*U*. However a sample update would be to let U* =
= U™ = | and use the below tactorization:

Q=0 U"RW__UTE L F.
LEFT FILE  RIGHT FILE

This update simply involves application of Proposition 2 until it does not
apply ({ = €*) and then shifting the remainder of the left file 1o the nght
file We call this update the TYPE 1 UPDATE.

We will now give an update in which R*"U* . . U™ is modified as op-
posed to moving them to the nght file. Let

Ek = Rkuk =

Then we define matrices U**' and E**'such that EXUX*' = Ur*'E**".
Fotlowing this procedure, R"U* . .. U™ can be replaced by U**' . ..
U™E™* " 5o that

Q=0 O OCE™RE L F
Further, we define a row eta R and a column eta F such that E™* ' = RF.
Therefore,

6—1 = Dl ‘ Dk-\Dlu\ ‘ Dm RFFs F A

LEFT FILE RIGHT FILE

* . . L . . » - -
.'\- L R R SN \ \-_’/_.,‘. “ S

-
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N We call this update the TYPE 2 UPDATE.
: We now present a set of propositions which justify the TYPE 2 UPDATE
Proposition 7. ’
2 Let
; i e
- bpi 0 ! b 0
Cd I Me-f | M- .
+ ~—4-=-- | _ o _ - Tttt
c e+t = | Me andEP = fyi. vl | vt v
. Y ——_—r—— — -]
", | ﬂ(¢1r }- Hisn
& 0 : | i 4] | : ‘ |
- |
P | By
i 4
- where ¢ # €* and u = 0.
r- i
:: | a, l 1| 3 |
= | . | : I
. poo [ |
ae_ 0 | :
- [ _ L _(_‘.: I - _#; b . .
uPt = 1 a, and EP*'= | Ay A At LAl An
Lo b_ |- T oo Sy o ]
o | al*ir | Mol
. L Lo 0 L |
4 o ) e !
4
y where
- A_{yq,ifiz(.
» "y, otherwise,
< {o, it = ¢
o a, = . ~
7, + pme. Otherwise,
then EpUp+1 = Opﬁ lEp¢1.
The following proposition is used to replace the cross matrix E™* ' with
arow eta R and a column eta F
’
v
o
%
1
\
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Proposition 8. j::?
Let R
Tl A : i
| | | 0 g
| He-n |
p— = o = o - | —————————
E= . Ye-v Ve I 7P In
—————— - —— -L ————— -
| Hesa
p 0 L | -
' -
Lo | 3
e
If ::.:'
1 LA “
| ] 0 Iy \
i { K-y 0 -
. e e - - — - —— T——T- —————— b ~ r——— -
R= 1. %1, X1 %-1...y| andF= LY : -~
| R - oy
F—=-==- == F--=- N O 1 men 1-: -.‘:-
0 ! | | : ] o
| ) ( W
t ) [ |
1 A J
where X and Y are such that "
XY=y - 2 yu -
e
then E = RF .:'-:.
We now present the update algornthm for the case in which the (" column -:
of T 1s being switched with the k" column of C Let y = T 'C e
.S
ALG 2 LU UPDATE FOR A KEY LEAVING COLUMN -
1 SetR « | ) .
Set R'[k] — o
Set 1«1
2 ti=k goto4d
Set a — R'[kJU(1) S
SetR*'«R RN
Set R, '« a | @
Set U« U ol
Set U, « 0 e
3 Seti—1+1andgoto? I
4 Set U «|
Set E" « R*"U" NN
.9
L:~\
i
v
AN
x;_-.
®
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5. Apply Proposition 7 to E'U"* ' to form U 'E'* .
Setie—i+1
6. Ifi<m goto$
7. Apply Proposition 8 to E™ 10 obtain RF where X =1_
At the completion of step 7 we have Q"' =U"' . . U™RFF® . .  F'.

VI. COMPUTATIONAL EXPERIMENTATION

Three test problems were selected for the experiment Sc205 is a stair-
case linear program which was generated by Ho and Loute [12] and
transformed into a network with side constraints. Gifford-Pinchot is a
modei of the Gitford-Pinchot National Forest [10] which has aiso been
transformed nto a network with side constraints RAN is a randomly gen-
erated problem

These problems were first solved and the pivot agenda was saved.
That is, entering and leaving columns for each pivot were saved on a file.
Thus file was then used by each code so that all three basis updates follow
the same path 1o the optimum. The number of nonzeroes required to
represent Q' at various points in the solution process is illustrated in
Figures 1 and 2. For both problems. the LU Type 2 update dominated
both the LU Type 1 update and the product-form code in terms of
nonzerces in the inverse The average core storage required for Q'
using the product-form update is approximately double that required for
the best LU update.

Given the above results, we developed three specialized network with
side constraints codes and computationally compared them with three
general in-core LP systems and a special system for multicommodity
network flow problems Al codes are written in FORTRAN and have not
been tailored to either our equipment or our FORTRAN compiler. None of
the codes were tuned for our problem set. A briet description of each
code follows

NETSIDE1, NETSIDE2 AND NETSIDE3 are our specialized network
with side constraints systems The first maintains Q™' in product form,
whiie the second and third maintain Q™' in LU form using a Type 1 and
Type 2 update, respectively. All use the Hellerman and Rarick [11] ren-
version routine  The working basis is reinverted every 60 iterations The
pricing routine uses a candidate list of size 6 with block size of 200

MINOS [15] stands for “a Modular In-Core Noniinear Optimization Sys-
tem” and 1s designed to solve problems of the following form.

minimize  f(x) + ex
subject to. Ax=b

E=x=u
where {(x) 1s continuously differentiable in the feasibie region For this
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nonzeroes in Q
[
5000 Product Form
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3000
LU Type 1
2000
LU Type 2
1000
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80 160 240 320

Figure 1. Nonzero Buildup In The Working Basis Inverse On
$C205 [22).
(317 columns, 119 nodes, 87 side constraints)

study f(x) = O at all x and therefore none of the nonfinear subroutines
were used for problem solution.

For linear programs, MINOS uses the revised simplex aigorithm with all
data and instructions restdirg in core storage The basis inverse is main-
tained as an LU factorization using a Bartels-Golub update. The reinver-
sion routine uses the Hellerman-Rarick [11] pivot agenda algorithm.

XMP 1s a ibrary ot FORTRAN subroutines which can be used to solve
inear programs. The basis inverse is maintained in LU factored form. The
pricing routine uses a candidate list of size 6 with two hundred columns
veing scanned each time the list is refreshed. The basis is reinverted
every 50 uerations.

LISS stands for “Linear in-Core Simplex System™ and is an in-core LP
solver with the basis inverse maintained in product form. The reinversion
rout:ne 1s a modification of the work of Hellerman and Ranck [11]. The
basis inverse 1s refactored every 50 iterations. A partial pricing scheme i1s
used with 20 blocks
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6001
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500 ¢
LU Type 1
400 4
LU Type 2
300
200 4
100 4
L —— v v —y— v ——> Iterations

160 320 4«80 640 800

Figure 2. Nonzero Buildup In The Working Basis Inverse On
Gifford Pinchot [20].
(1160 columns, 533 nodes, B4 side constraints)

MCNF stands for “Multicommodity Network Flow". MCNF uses the pri-
mal partitioning aigorithm also. The basis inverse is maintained as a set of
rooted spanning trees (one for each commodity) and a working basis
inverse in product form. This working basis inverse has dimension equal
to the number of binding GUB constraints. A partial pricing scheme Is
used. Our computational experience is given in Table 1.

The row entitled GUB Constraints, gives the number of LP rows which
correspond to “GUB Constraints”. The row, entitied “Binding GUB Con-
straints”, gives the number of GUB constraints met as equalities at opti-
mality using MCNF. All runs were made on the CDC 6600 at Southern
Methodist University using the FTN compiler with the optimization feature
enabled.
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Based on these results, we conclude that for lightly constrained mul-

ticommodity network fiow problems

(i) XMP and MINOS run at approximately the same speed,

(i) NETSIDE1, NETSIDE2 and NETSIDE3 run at approximately the

same speed, and

(iii) the three NETSIDE codes are approximately twice as fast as XMP

and MINOS.
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CHAPTER 3

The Frequency Assignment Problem: A Solution via
Nonlinear Programming*

J. David Allen
Switching Systems Division, Rockwell International, P.O. Box 10462, Dallas,
Texas 75207

Richard V. Helgason and Jeffery L. Kennington
Operations Research Department, Southern Methodist University, Dallas,
Texas 75275

This paper gives a mathematical programming mode) for the problem of assigning
frequencies to nodes in a communications network. The objective is to select a
frequency assignment which minimizes both cochanne! and adjacent-channel inter-
ference. In addition, a design engineer has the option to designate key links in which
the avoidance of jamming due to self interference is given a higher priority. The
mode! has a nonconvex quadratic objective function, generalized upper-bounding
constraints, and binary decision variables. We developed a special heuristic algorithm
and software for this mode! and tested it on five test problems which were modi-
fications of a real-world problem. Even though most of the test problems had over
600 binary variables, we were able to obtain a near optimum in less than 12 seconds
of CPU time on a CDC Cyber-875.

1. INTRODUCTION

One of the most critical design problems in a radio communication network is
the assignment of transmit frequencies to stations (nodes) so that designated key
communication links will not be jammed due to self interference. In this inves-
tigation, we describe a novel new optimization model and a solution technique
which can be used to assist design engineers in this process.

1.1. Problem Description

A radio communications network consists of radio stations, each equipped with
one or more transmitters and receivers. When a given station has the ability to
receive information intelligibly from a transmitting station, a link is said to exist
from the transmitting station to the receiving station. The interconnection of
these stations and links may be viewed graphically as a set of nodes, representing
the radio stations, joined together by directed arcs, representing the links.

We assume in our model that one transmitter and several receivers are located
at each radio station (node). The transmitter is tuned to a specified center fre-
quency, and the receivers are tuned to the transmit frequencies of the neighboring
stations to which the station is to be linked. A channel is associated with each

* Comments and criticisms from interested readers are cordially invited.

Naval Research Logistics, Vol. 34, pp. 133-139 (1987)
Copyright © 1987 by John Wiiey & Sons, Inc. CCC 0028-1441/87/010133-07$04.00
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center frequency in a way similar to the way channels and frequencies are as-
sociated in a television set. When a TV is tuned to channel 4, for example, it is
really being tuned to receive video signals being broadcast at 67.25 Miiz.

For our model, a given center frequency will be associated with each channel
number. Using this definition, the frequency assignment problem may be defined
as follows: Given N transmitting stations (nodes), assign 1 of F transmit channels
to each node in such a way as to minimize the number of designated key links
jammed due to cochannel and adjacent-channel interference. We say that a link
is jammed if either of the following conditions occurs: (i) a node receives two
signals on the same channel that are less than a dB apart in signal strength, or
(ii) a node receives a signal on a given channel while a neighboring node transmits
on an adjacent channel. If the neighbor’s signal strength exceeds the signal
strength of the current node by more than B dB, then the incoming signal will
be garbled. The constants o and B are functions of the hardware used in the
network. Some of the determining factors are the receiver selectivity, the type
of signal modulation, and the purity of the signal.

We now introduce the notation used to describe the mathematical model. Let
f € {1, ... ,F} denote a channel and n € {1, ... ,N} denote a node. e, will
denote a vector whose entries are 0 except for the ith, which is 1. Let x,, = 1 if

channel f is assigned to node n and 0 otherwise, x{ = the row vector
[xn. . .. xw], and g(x,, . . . ,x;) = a weighted number of jammed links with
assignment (x,, . . . ,Xr). Using the above notation, the mathematical model of
the frequency assignment problem is
min  g(x,, . .. Xf) (1
s.t. Yx,=1  foraln )
/
x, € {0,1}, for all f,n. 3)

For this application, g(-) is a nonconvex quadratic function and therefore (1)
(3) are members of the class of binary nonconvex cost nonlinear programs.

1.2. Related Literature

A heuristic procedure for solving a similar problem using a graph colonng
algorithm has been evaluated by Zoellner and Beall [7]. Closely related modelis
have been investigated by Morito, Salkin, and Williams [5) and by Mathur, Salkin,
Nishimura, and Morito [4). Their models are general linear integer programs
with a single constraint. Using a special branch-and-bound algorithm, they suc-
cessfully solved their model with up to fifty channels.

1.3. Accomplishments of the Investigation

We developed a novel new mathematical model of the frequency assignment
problem which takes the form of a binary nonconvex quadratic cost nonlinear
program. The model incorporates weighting constants that allow a design engineer
to tune the model to a particular application. We present an elegant specialization
of the convex simplex algorithm to obtain a local optimum for this model. In
addition, specialized software has been developed for this model and tested on

L




. . B g @ At el At ate Al g Y -
n ofia derpfarp! - LRl Nl e TR0 B ) it ] AT AT TN RARASANES L

Allen et al.: Frequency Assignment 135

five versions of a real-world problem. The software works quite well, requiring
less than a minute of computer time for all five test problems.

2. THE OBJECTIVE FUNCTION

In this section, we define the weighted interference function, g(x,, . . . ,xf).
This function is generated from a set of signal strength matrices, (A4,, . . . ,Af),
two weighting matrices, and a set of critical values a, 8, and &,, . . . ,55. Let @},

denote the received signal strength in dBu/m of a signal which originates at node
i and is received by node j, and let A; denote the matrix whose elements are a.
Let the weighting matrices P and W be determined as follows:

{ﬁ,, if (i,7) 1s a designated key link
p, =

Das otherwise
and
{Wl. if (i,j) is a designated key link
w, =
v w,.  otherwise.

The constants p,, p,. w,, and w; are tuning parameters which are used to provide
weights in the interference function for the key links.
Gamma is used to denote the scalar function, defined by

x) {l, ifx>0,
X} =
M 0, otherwise.

Using v{:). we define the three matrices

2 Y(a - ]a/,A - a{‘l)wuk + Py, P#J
. ko
qu/ = 0;2'5,
0. otherwise.

S ovlap' - oah = Bywa, Q%
ke,

f —
r‘ll - ':a>5n
g, otherwise,
and
> @i - al ~ B)wa. i # ],
J/ = I LYY
Sy = Ydos,

0, otherwise.

Using these matrices. the interference function is given by

f-F J=F-1 1=F
BE. .. X) =X H QO+ I LRI+ Ky,
f=1 1= /=2
— N - N e ™~

cochannel adjacent channel adjacent channel
interference  interference from interference from
channe| above channel below
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In addition it is often desirable to use all of the channels. Therefore, we
appended the function

i=N-1 J=N
W2 2 52X
! i=] j=t141
~ to g(-) so that in the absence of self interference, the channels would be equally
. distributed among the nodes. The scalar w; is also a tuning parameter.
l Using the above formulae, we now give an example which presents the matrices

required to define g(-). Leta = 2,8 = 3,w; = 0,8, = Oforalln, and p, =
w, = 1foralliy. If

- -

0 1 2 5
1 0 3 3
Al - 2 3 0 2 ’
4 3 2 0
and _
(0 2 3 5]
2 0 5 5
A=l s o
5 5 1 0
then
0 1 0 1] 0 1 0 0
1 0 2 1 1 0 1 0
2=10 2 o 1! 2=lo 1 o 1
1 1 1 0 0 0 1 0
0 0 1 1]
0 0 0 1
R=1o o o of
LO 0 0 O_J
and
0 0 0 0
0 0 0 0
=11 0o o of
0 0 0 0
3. THE ALGORITHM
Let ' = [x], ... x;]. Then the frequency assignment problem takes the
general form:

min g(x) =x'"Cx 4)
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st. Sx,=1 foralln 5
!
x5, € {0,1}, for all f,n 6)

where the diagonal elements of C are 0 and all other elements are positive. The
continuous relaxation of (4)~(6) is obtained by replacing (6) with

0<x,=<1, forallfn. )]

The model (4), (5), (7) is a nonconvex quadratic program and a local optimum
can be efficiently obtained by application of the convex simplex algorithm as
described in Zangwill [6]. Suppose we begin with a feasible integer solution
X' = [X],...,XF]. We assume that all nonbasic variables have a value of zero.
Letl,, . . . ,Iydenote the subscript such thatX;, = -+ = X, = 1. Then a nonbasic
variable x5, with a value of zero prices favorably if [Vg (X)}'(e, — ¢;) <0, where
i= -~1N+nandj=(f -~ 1)N + I,. The line search for this problem
requires that we solve the problem

0tr{‘inl g(xX + (e, ~ ¢,)4). (8)
But
dg (X + (e, — ¢)A) _ o \Oe (% _
dA Aot = (e, e}) Vg (X + ¢, e})
=(e—-¢)(C+C)T+e~c¢)
= [Vg(@)]'(e, — &) + (e, — ¢)(C + C')(e, —¢).
®
./ 3
[ =
®
®
e
@
\ =
N N
R '
@ RELAY NODE

Figure 1. 43-node communication network with designated key links.
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Since x;, priced favorably, then [Vg (X)]'(e, — ¢,) < 0. Also, (e, ~ ¢)'(C +
C)e —¢) =¢(C+ Ce+e(C+Cl —e(C+ Ce —e(C+
C')e,. But the diagonal elements of (C + C’) are 0 and all other elements are
non-negative. Hence, the solution to (8) is A* = 1 and the exact change to the
objective function will be Vg (x')(e, — ¢,) — ¢/(C + C')e, — ¢/(C + C')e,, a
strict decrease. Therefore, in the new solution xg, is set to 1 and x,, is set to 0.
Since this holds for every iteration of the convex simplex algorithm, integrality
is maintained and a local optimum for (4)+6) can be obtained by finding a local
optimum for (4), (5), (7).

Let X be any initial assignment for the frequency assignment problem. Using
this initial assignment, the algorithm may be stated as follows:

Forf=1,...,F
Forn=1,...,N.
l, =k, where X, = 1.
i:=({-1)N+n
Ji=(f-DN+ 1,
p:= [Vg (X)]'(e, — e).
Ifp<O
then
X,:=0
X =1
Repeat as long as p < 0 for some f and some n.

4. COMPUTATIONAL EXPERIENCE

We implemented the frequency assignment algorithm in a FORTRAN code. All
data, including the matrices Q,. R,. and S, are stored in high speed core. Special
subroutines were w-itten to evaluate both g(-) and Vg (-) at a point. The code
begins with Fdifferent starting solutions and stops when a local optimum is found.
The initial assignment for run r € {1 F} is to assign frequency {{(n + r —
2) modulo F} + 1} to node n. The best solution obtained from all F runs is the
output.

Table 1. Computational Results With 43 Node Mode)

Problem

Row description

adB

g dB

F (channels)

Binary variables
Iterations

Solution time (secs)
Initial objective value
Final objective value
Jammed key links

et AT e T T T AT AN WY AT Tt Nt
-. \-'l‘f‘-",- “\~" \J:'-"\n‘\-’ - vP d’.‘i" ol



Allen et al.: Frequency Assignment 139

Five test problems were generated from the real-world 43-node network illus-
trated in Fig. 1. The lines connecting nodes are the designated key links. The
problems all have the same topology but differ in the selection of the critical
values and the weighting constants. A random assignment was generated and the
matrices were modified so that this assignment produced a cost of zero. Hence,
the optimal objective value for each problem is zero.

Our computational experience is reported in Table 1. All runs were made oa
& CDC Cyber-875 using the FTNS compiler with OPT = 2. The initial objective
value row is the average objective value for the F initial solutions. Note that all
five problems were run in less than 1 minute of CPU time and the final objective
values were quite close to the optimum as compared to the initial assignments.

5. CONCLUSIONS

Our optimization model and computer software provide a practical approach
to assist communication network designers in obtaining near-optimal solutions
for the frequency assignment problem. The fact that the diagonal elements of C
in the quadratic objective function x'Cx are zero allows a very efficient imple-
mentation of the convex simplex method which maintains integrality. Hence. if
we begin with an integer assignment, the convex simplex algorithm follows a
sequence of integer points until a local minimum is obtained. This procedure is
so fast that very large problems can be easily handled by this approach.
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CHAPTER 4

A GENERALIZATION OF POLYAK’S CONVERGENCE
RESULT FOR SUBGRADIENT OPTIMIZATION

Ellen ALLEN, Richard HELGASON and Jeflery KENNINGTON
Deparimen: of Operations Research, Southern Methodist University, Dallas, TX 75275, USA

Bala SHETTY
Department of Business Analysis, Texas A & M University, College Station, TX 77843, USA

Received 20 August 1985
Revised manuscript received 17 November 1986

This paper generalizes a practical convergence result first presented by Polyak. This new result
presents a theoretical justification for the step size which has been successfully used in several
speciahized algonthms which incorporate the subgradient optimization approach.

Key words: Subgradient optimization, nonlinear programming, convergence

1. The subgradient algorithm

Let G=0 be a closed and convex subset of R". For each v € R”, define the
projection of ¥ on G, denoted by P(y), to be the unique point of G such that for
all € G, [P(y)—yvj=|z-y[ ltis well known that the projection exists in this case
and that for all x, ve R” |[P(x) = P(y)| < |x~y|.

Let g be a finite convex functional on G. For each v € G, define the subdifferennal
of g at y by

agivi={n ne R" andforall :€ G, g(z)zg(v)+n (z2-y)}

Any neagiyv)is called a subgradienr of g at v It 1s well known that if ¥ is a point
at which g s differentiable. then agivy = {Vg(y 1}, a singleton set

It is also well known that on the relative intenor of G. g is continuous and the
subdifferential of g always exists That this may not be the case on the relative
boundar 1s shown in the following simple example

Example }. Let G=[{0,1]1n R The finite convex function f G - R given by

0, 0syv<],

(1=
S0 {l. v=1,

fails to have a subgradient and 1s discontinuous at the boundary point y = 1.
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310 E. Allen e1 al / Polyak's convergence result

That the notions of continuity and subdifferentiability are independent on the
relative boundary of G is shown by the following examples.

Example 2 [21,p.229]. Let G=[0,1] in R The finite convex function f: G-~ R

given by f(y)=~(1-y)"? is continuous on G but fails to have a subgradient at
the boundary point y=1.

Example 3 [6,p.96]. Let G={(y,,y,):0<y,<y,<1} in R’ The finite (but
unbounded) convex functional f: G-+ R given by

(»7)/», O0=y,€y, O<y <1,

o=
y 0, N=y=0,

is discontinuous at (0, 0) but has a subgradient everywhere on G.

Consider the nonlinear programming problem given by

minimize g(y) (NLP/SD)
subjectto  ye G,

where we assume that for all ye G, ag(y)# 0 and that the set of optimal points
I' # . We denote the optimal objective value by 1v.

The subgradient optimization algorithm for the solution of NLP/SD was first
introduced by Shor [23] and may be viewed as a generalization of the steepest
descent method in which any subgradient is substituted for the gradient at a point
where the gradient does not exist. This algorithm uses a sequence of positive step
sizes {s,}, which in turn depend on a predetermined sequence of fixed constants
{A,} and (in some cases) certain other quantities.

Subgradient optimization algoritbm
Step 0 (Initialization)
Let yo€ G and set i« 0.
Step 1 (Find Subgradient and Step Size)
Obtain some 7, € 9g(y,).
If n, =0, terminate with y, optimal; otherwise, select a step size s,.
Step 2 (Move to New Point)
Set y,.,« P(y,—sm,), i« i+1, and return to step 1.

Unfortunately, the termination criterion in step 1 may not hold at any member
of I' and is thus computationally ineffective. Hence, some other stopping rule must
be devised. In practice this is often a limit on the number of iterations. The functional
values produced by the algorithm will be denoted by g = g(»,).
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Various proposals have been offered for the selection of the step sizes. Four
general schema which have been suggested are:

Si=A,. (1)
si=A/ | nill, (2)
so=Ad/ [, 3)
si=A,(8,=p)/Inill’, )

where p, the targer value, is an estimate of y and all A,>0.

The papers of Polyak [19] and Held, Wolfe and Crowder [12] have provided the
major impetus for widespread practical application of the algorithm. Schema (4)
has proven to be a particularly popular choice among experimenters. Theorem 4 of
Polyak [19] is the most often quoted convergence result justifying use of this schema.
For many mathematical programming models, the target value is a lower bound on
the optimum (see, e.g., [2, 3, 4, 5, 13, 14, 22]). For this case Polyak's Theorem 4,
using schema (4), requires that A, =1 for all i. For all the above studies, a decreasing
sequence of A’s was found to work better than A; =1 for all L Hence, the existing
theory did not justify what we had found to work well in practice. The objective of
this paper is to present improved theoretical results which help to explain what has
been found to work well in practice. Specifically, we loosen slightly the restrictions
imposed on the sequence {A,}, and obtain a more general result when the target
value is less than the optimum.

The literature on the subgradient algorithm is extensive, much of it in Russian.
Good coverage is contained in the bibliographies of [20], [24], and [25]). Much of
this literature has grown up in conjunction with the relaxation method for solving
linear inequalities (see, e.g., [1,7,10,11,15)).

2. Polyak’s convergence results

The results of Theorem 4 of Polyak {19] use the following general restrictions on
the sequence {A,} used with schema (4):

O<asAsB8<2, (5)
where a and B are fixed constants.
The results contained in this theorem include, under (4), (5), and (essentially)

the assumption that there is some « >0 such that |||l <«:
(A) if p> v, either

(a) there is some n such that g, <p, or
(b) all g,=p and limg, =p;
and

(B)if p<yandall A,=1, given §>0,
there is some n such that g, < y+(y—p)+6.
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If (b) occurs in part (A), the convergence is geometric. Polyak’s theorem contains
additional results for G = R" (so that the projection is superfluous), with all A, =1
and p# v, in which case geometric or faster convergence to the target value is
obtained.

In the next section we will relax condition (5) to the following:

0<A,€8<2 and Y A,=co, (6)
where B is a fixed constant. With this relaxation (which allows the sequence {A,}
to approach zero) we present results analogous to (A) and an interesting generaliz-
ation of (B).

Stronger convergence results are available for special cases, e.g. where set G
contains a set

H={x:f(x)=<0,i=1,...,m},

with each f° convex and H having a nonempty interior (see, e.g., [8, 16, 17, 18] and

[25,Ch. 2]).
o
3. New convergence results
The main results in this section appear in Propositions 5, 7, 9, and 10. Propositions
5 and 7 correspond to part (A) of Polyak’s Theorem 4 with slightly wveaker conditions P
on the sequence {A,} and Proposition 9 is a generalization of part B of Theorem 4.
Proposition 10 is a new result apparently obtainable only when the conditions on
{A,} are weakened so that we may require A, ~0.
Proposition 1. If y€ G, then
ly =yl =y =y l7+ sTlin 7+ 2s.(8(y) - ). o
Proof. Let ye G.
"y “Visi "2 = ”y - P(yl - 5-"7.)”2 = "P()’) - P(,V. - 5:"7.)”2 = ”," =¥ + s ":
=y =yl + sl + 250, (r=.) .
<|ly-pl’+sinl’+2s(8(») -8
Proposition 2. If ye I', then under (4),
Iy =y =y =yl + A8 - p)[ A8, — p) = 2(8, = M)/ I II".
Proof. Let y e I. Substituting in Proposition 1 for s, from (4) and using g{y) =1, ’
we obtain
Iy = yislP < Iy =y 7+ 228~ p)/ I n i+ 2A.(8.~ 2) (v - &)/ I n.I’
=y - »lP+ A8, - p) A8 - p) - 2(8.~ NV IIn.lI*.
]
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Proposition 3. IfyeT, p=1y, and g, # p, then under (4),
Iy =yl = ly =yl + A = 2)(8i = p)/ I 1%
Proof. Let yeI, p>> v, and g, = p. Now
A(8,-p) =28 - y)=A(2-p)~ 28~ p) = (A,—-2)(8,~p)
Thus,

A8 = p)A (8 —p)=2(g, = NV Inl €A -2)(g - p)/ |0l :
The result now follows from Proposition 2. y

Propositiond4. IfyeI',p =y, and all g, > p unde  (4) with all A, <2, then the sequence !
{Ily = 5.1’} is monotone decreasing and converges to some ¢ =90. ,

Proof. Let yeT, p= 4, all A, <2, and all g, = p. Since each A, <2, then also each

. AdA,=2)(g.-p)/lnll <0, and from Proposition 3, {|ly—y:|°} is a monotone
decreasing sequence. This sequence is bounded below by zero and thus converges
to some nonnegative value, say y.

Proposition 8. If p = y and there is some x > 0 such that all || n,[| < «, then under (4)
and (6), given 8§ >0, there is some M such that g\, < p+ 8.

o
Proof. Let >0 be given, with p= 1y, and all |[5,{| <«. Suppose, contrary to the
desired result, that all g, > p + 6. Take any y € I'. Then from Proposition 3,
AC-a)g =V InlP =y =yl =lly =yl ;
Since A, <B8<2, |n| <, and g ~p>38,
®

A(2-B)8 /K=y =yl =y =yl )

Adding together the inequalities obtained from (7) by letting i take on all values
from 0 to n, we obtain

(Aot 44,02~ B)8/ k< |ly = yol* = Iy = yaurl®. (8)

As n goes 10 <, the left side of (8) goes to oo, whereas, by Proposition 4, the right
side of (8) goes to ||y — yol* ~ ¥°, a contradiction.

Proposition 5 gives a practical convergence result when the target exceeds the
optimal value. At worst we eventually obtain an objective value arbitrarily close to
. ) the target value. At best we may obtain an objective value as good as or better than
. the target value, in which case it may be desirable to restart the algorithm after
supplying a new target value.
It does appear theoretically possible that no iterate may have an objective value
as good as or better than the target value. In this case, we obtain convergence results
in Proposition 7 analogous to Polyak's Theorem 4, part (A), alternative (b).
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Proposition 6. If p> y and all g,> p under (4) and (6), then the sequence {y.} is
bounded.

Proof. Let ye T, p> v, and all g;> p. Now,

Iyl =ly;i=y+yl<ly.—yl+ Uyl
From Proposition 4, we then have that

vl <lyo=yl+Ixl

Proposition 7. If p = v, there is some x > 0 such that all {|n,|| <, and all g,> p under
(4) and (6), then {y;} converges to some z € G and some subsequence {gx,)} converges
to p=g(z). If g is also continuous on G, then {g,} converges to p = g(z).

Proof. Let p=1v, all g,>p, and all ||n,|| <«. Using Proposition 5, we obtain a
convergent subsequence of {g,}. There is some M (0) such that gy, < p+1. Having
determined M(j), define h, = min{g,, ..., gm(;}—p >0 and § =min{(3)"~", h/2}.
Applying Proposition S5, there is some M(j+1) such that gy ., <p+§, and
furthermore, M (j+1)> M(j). As constructed, {gs;)} converges to p. By Proposition
6, {¥m:,} is bounded, so a subsequence of {yu;}, say {¥n »}, converges 10 some
point z. Obviously, {gn.,,} also converges to p. Since G is closed, z€ G. Let 7 be
any subgradient of g at z. Thus for each j, gn(;) = g(2)+ 7(yn(;) — 2), from which
it follows that p = g(z). Now consider the ancillary functional g7: G - R, given by
g°(y) =max{g(y), o}. Note that g° is convex and finite on G and z is a minimum
point of g° over G. Also, since g°(y) = g(y) and each g > p, each subgradient n,
of g at y, is also a subgradient of g° at y,. Thus under (4) and (6), foreach i, g, = g.
By Proposition 4, applied to g°, {y,} converges to z. When g is continuous on G,
lim g, =g(z)=lim gn¢; = p-

If we simply require that subgradients exist for all points generated by the
subgradient optimization algorithms, and relax the requirement that subgradients
exist at all points on the relative boundary of G, then, contrary to the result in
Proposition 7, when all g, > p, {y.} can converge to a point z with g(z) > p, as shown
in the following example.

Example 4. Let G={(y,,y.):0<y,,y,<1} in R’ The finite convex functional
J: G- R given by

=17 Ly #= (1,1,

19 (}’1»}'2)=(1,1),

fails to have a subgradient at the boundary point z=(1,1). Also, y=0 with I'=
{(31.y2): y1=1,0=< y,<1}. Letting A, = 1, for all i, (6) holds. Then under (4), starting

from yo = (0, 1) with p = 0 = , the subgradient optimization algorithm generates the
points y, = (1-(3)', 1) with g, =(3). Now limy,=z butlimg =0=p<g(z)=1.

f(y)={

ST A N T YT NN "\ \‘
. ’,

-n~~~

e e S e S, T




LY X v te® At ola’ s St Bt gt A o aia e e Be"
. aas ot o . . mat ALt mab “ ya ) * e’ g2’ at & . gt Jut » . W Ay . -
D L

-
A
’
'
'
a
E. Allen et al | Polyak's convergence result 315 -
o Proposition 8. If yerl, g > p, and A, < 8 # 2, then under (4), o
1y =yl < by = 217+ A8, - )2 - B) (7 - 8) +(B/ 2~ )y - PV lin.I 3
Proof. Let yeTl, g,>p, and A, < 8% 2. Now, N
L
. Al(gl-p)_z(gl-7)‘ﬁ(gl—p)—2(gl—7) i
, =B(g.-p)-(2-B)g.-v)-B(&~7) by
=B(y-p)+(2-BXy-8) 2
=(2-B)(v—8)+(B/(2-B)Nv~p)]. -
. ThuS, Y
Alg -p)A(g~p)-2g. = V)V InI? A
<A(g-p)2-B)(y-8)+(B/(2=BN(y-p))ln’. :
The result now follows from Proposition 2. A
\
Proposition 9. If p < y and there is some x > 0 such that all ||n,| < x, then under (4) ::
and (6), given 8 > 0, there is some-M such that g, < y+(B/(2~-B))(y—p)+é. .
Proof. Let § >0 be given, with p <4y, and all |||l < x. Suppose, contrary to the ’
- desired result, that all g, >y+(B/(2-8))y—-p)+86, or (y—g)+(B/(2-B))x
{y-p)<-8. Since B<2 and g, > p, then '
A(g.-p)2-B)(y-g)+(B/2-BN)y-p))ln)}
<-8A(g.-p)2-8)/ 0l (9) :
° Take any y € I'. Then by (9) and Proposition 8, we have that 4
8 (8.~ p)2=B)/ Il <ly =yl =y =yl -
Since ||n,]l <« and g, = y> p, then also .
A8(y=p)2-B)/ & <[y =yl =y =yl (10 .
Adding together the inequalities obtained from (10) by letting i take on all values .
from 0 to n, we obtain .
Ao+ +2,)8(y~p)(2=B)/ K <[[y = yoll* = ¥ = yauil”. an -3
As n goes to o, the left side of (11) goes to <, whereas, by Proposition 4, the nght ‘
side of (11) goes to ||y — yoll> - ¢, a contradiction. .
The above is our generalization of Polyak’s Theorem 4 Part (B). At worst we .-

eventually obtain an objective value whose error is arbitrarily close to 8/(2-8)
times the error present in the target value estimate of y.
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Proposition 10. If p <y, there is some x >0 such that all ||n,|<«, and all g, >y
: under (4) and (6) with A, + 0, then there is a subsequence {g, ;) which converges 10
I\ .
2 Y
I.
,-: Proof. Let p <y, all [n,]| <«, A, =0, and all g, > y. Using Proposition 9, we obtain
::: a convergent subsequence of {g,}. Define 8o=min{1, 1/(y-p)} and §,=1. There

is some N(0) such that for all i = N(0), A, <B,. Then also (8,/(2-B.))(v-p)=1.
Applying Proposition 9 to {g,_ n0), there is some M (0)= N(0) such that gy, <
Y+(Bo)/(2—-Bo)(y—p)+8,=y+2. Having determined M(j), define h =
min{go, ..., gmn} = ¥>0, &+ =min{(})’"', h/3}, and B,.,=min{l, §.,/(y-p)}.
There is some N(j+1) such that for all i= N(j+1), y,<8,.,. Then also (8,.,/
(2-B,.0)y-p)<$8... Applying Proposition 9 to {g._n(+1}, there is some
M(j+1)= N(j+1) such that

gM()*Hs ‘y+(ﬁ/-ﬂ/(2-ﬂj+l))(7—p)+ 6;*l< 7+251¢l'
Then also

@0 Q

'_("-'." .

gM(l*l)$7+(%)l and gM(/*l)s‘y+(2/3)hj<min{g01"'ng(j)}v
so that M{(j+1)> M(j). As constructed, {ga;)} converges to y.

4. Conclusions

Propositions 5 and 7 give the convergence results obtained under (4) and (6) for
a target value at or above the optimal value. It is readily apparent that Proposition
5 is compatible with Polyak's result (A). Proposition 9 gives the corresponding result
for a target value under the optimal value. We have found this to be a more practical
result (see, e..g., [2, 3, 4, 5, 13, 14, 22]). Taking 8 =1, we have Polyak's result (B)
as a special case of Proposition 9. Proposition 9 shows more clearly the dependence
of the demonstrably attainable error on the upper bound 8 for {A,}. Requiring A, - 0
allows us to produce a subsequence of objective values converging to the optimal
objective as shown in Proposition 10. This paper has not addressed the question of
any convergence rate associated with the use of (4) and (6). Goffin [9] has provided
such results when schema (2) is used.
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The Equal Flow Problem .
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Abstract. This paper presents a new algorithm for the solution of a network problem with -
) equal flow side constraints. The solution technique is motivated by the desire to exploit the special g
¢ structure of the side constraints and to maintain as much of the charactenstics of pure network >
problems as possible. The proposed algorithm makes use of Lagrangcan relaxation to obtain a
lower bound and decomposition by right-hand-side allocation to obtain upper bounds. The .
Lagrangean dual serves not only to provide a lower bound used to assist in termination criteria for :
the upper bound. but also allows an initial allocation of equal flows for the upper bound. The al- K
gorithm has been tested on problems with up to 1500 nodes and 6000 arcs. Computational expe- 3
o rience indicates that solutions whose objective function value is well within 1% of the optimum A
can be obtained in 1%-65% of the MPSX time depending on the amount of imbalance inherent

in the problem. Incumbent integer solutions which are within 99.99% fcasible and well within 1%
of the proven lower bound are obtained in a straightforward manner requiring, on the average, 30%
of the MPSX time required to obtain a linear optimum.
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1 Introduction

This paper makes use of relaxation in conjunction with decompostion for the sol-
ution of the equal flow problem. The problem is easily conceptualized as a minimal cost
network flow problem with additional constraints on certain pairs of arcs. Specifically,
given pairs of arcs are required to take on the same value. The problem is defined on a
network represented by an m x n node-arc incidence matrix, A, in which K pairs of arcs
are identified and required to have equal flow. Mathematically, this is expressed as:

Minimize cx
s.t. Ax = b

X, integer

where ¢ is a 1 x n vector of unit costs, b is an m x | vector of node requirements, 0 is
an n x I vector of zeroes, x is an n x 1 vector of decision variables, and u is an n x |
vector of uppér bounds. This mathematical statement of the problem, henceforth re-
ferred to as problem 11, assumes that the first 2K arcs appear in the cqual flow con-
straints. This is not a restrictive assumption, since by rearranging the order of the arcs,
any equal flow problefn with K pairs can be cxpressed in the above form. Note that the
K pairs of arcs are mutually exclusive, i. e., an arc appears in at most one side constraint.
We also assume without loss of generality, that u, = u,., fork = 1,2,...,.K.

Applications of the equal flow problem include crew scheduling [5], estimating
driver costs for transit operations [14], and the two duty period scheduling problem
{11]. When integrality constraints are not present, the modcl is referred to as the linear
equal flow problem (P1). The linear model is applicable to problems where integrality
is not restrictive. For example, in federal matching of funds allocated to various projects
{4]. The linear equal flow problem may be solved using a spccialization of the simplex
method for networks with side constaints [3]. It has also been solved by transformation
to a nonlinear programming problem [4].

The use of relaxation techniques and/or decomposition techniques in the solution
of problems with special structure in the constraint set is motivated by potential com-
putational efficiencies. Glover, Glover and Martinson [6] address a generalized network
problem in which arcs in specified subsets must have proportional flow. The solution

approach is via solution of a series of problem relaxations and progressive bound ad-
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justment. The underlying principle is shared in the ensuing development for the equal
flow problem.

Lagrangean relaxation has been used to aid in the solution of the integer equal flow
problem in two specific instances. Shepardson and Marsten [11] reformulate the two
duty period scheduling problem as a single duty period scheduling problem with equal
flow side constraints and integrality constraints on the variables. Turnquist and
Malandraki [14] model the problem of estimating driver costs for transit operations as
an integer equal flow problem. In both studies, the side constraints are dualized and the
Lagrangean dual solved using subgradient optimization to yield a lower bound on the
optimal objective value. In [14] step-size determination during the subgradient opti-
mization process is aided by a line search.

The objective of this investigation is to develop and computationally test a new
algorithm, based on relaxation and decomposition, for the linear equal flow problem and
its use in solving the integer equal flow problem. The linear cqual flow problem is a
natural relaxation for the integer problem and also provides an approximation to the
integer model. Because the problems are very closely allied, primarily due to the
unimodularity of the node-arc incidence matrix, solutions to the integer model can be
obtained by using a slight modification of the technique for the linear model. By em-
ploying relaxation and decomposition, solution of the equal flow problem is via two se-
quences of pure network problems, totally eliminating the computational overhead

associated with maintaining the inverse of a basis matrix. The exploitation of the special

structure of the side constraints and the network structure resuits in a decrease in both
. computer storage and computation time since reoptimization procedures are applicable
for solution of subproblems of the two sequences.

The solution technique consists of making use of the Lagrangcan dual of the equal
flow problem with the side constraints dualized to obtain a lower bound. The
Lagrangean relaxation of the equal flow problem does not enforce the equal flow con-
straints. The Lagrangean dual for the linear and the integer equal flow problem is ex-
actly the same, since the constraint set [or the Lagrangean relaxation is identical. This

Lagrangean dual is similar to the quadratic programming problem used in [4]. The

similarity lies in penalizing the violating equal flow constraints. .‘ﬂf

Upper bounds are obtained by use of a decomposition of the equal flow problem ‘
based on parametric changes in the requirements vector. The Lagrangean dual provides 1;2
a lower bound which is used to aid the the solution of the decomposition model in de-

termining an initial right-hand-side allocation as well as providing a lower bound on the

-
@0

objective so that a solution is known to be within a percentage of the optimal. As such,
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the algorithm can terminate when a solution with a prespecified tolerance on the objec-
tive function value is obtained. By enforcing that the parametric changes in the re-
quirements vector be such that integral allocations of equal flow be obtained, upper
bounds on the integer problem can be obtained.

The solution technique makes use of subgradient optimization in the solution of
both the Lagrangean dual for obtaining a lower bound and the decomposition model for
obtaining the upper bound. Both the lower and upper bounding algorithms have been
developed in the context of the general subgradicnt algorithm which is briefly presented
in Section 2. Section 3 introduces the Lagrangean dual for the equal flow problem and
the lower bounding algorithm. Section 4 presents the decomposition of the linear equal
flow problem and the upper bounding algorithm. The overall procedure which makes
use of the algorithms of Sections 3 and 4 is given in Section 5, computational res:lts are

given in Section 6 and conclusions drawn in Section 7.

2 The Subgradient Algorithm

The subgradient algorithm was first introduced by Shor [13] and provides a frame-
work for solving nonlinear programming problems. It may be viewcd as a genecralization
of the steepest descent (ascent) method for convex (concave) problems in which the
gradient may not exist at all points. At points at which the gradicnt does not exist, the
direction of movement is given by a subgradient. Subgradients do not nccessarilv pro-
vide improving directions and consequently, the convergence results of Zangwill [15] do
not apply. Convergence of the subgradient algorithm 1s assured, however, under fairly
minor conditions on the step size.

Given the nonlinear program PO,

Minimize {{y)
s.t. ye G

where f is a real-valued function that is convex over the compact, convex, and nonempty
set G, a vector N is a subgradient of fat y  if Ry) - ly’) 2 n(y-y) forallye G. For
any given y’ € G, the set of all subgradients of [ at y* is denoted by ¢fy’). Moving a
sufficiently large distance s along -n can yicld a point x = y’ - s1{ such that x ¢ G. The

projection of the point x onto G, denoted by P|x], is defined to be the unique point y €
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G that is nearest to x with respect to the Euclidean norm. Using the projection opera-
tion, the subgradient algorithm in its most general form follows:

o

ALGORITHM 1: SUBGRADIENT OPTMIZATION ALGORITHM
0 Initialization
Let y’ € G,
Select a set of step sizes s, 5, S3ye..

A

i—0,
1 Find Subgradient
Let 1, € of(y".
If n, = 0, then terminate with y' optimal.
2 Move to new point
y*! < Ply' - sn]
i — i+ 1, and return to step 1. P

There are three general schema which can be used in determining the step size when
the subgradient algorithm is implemented for a specific problem:
s = A
Al

¢ iii. s = A(Ry) - FYlIn,J*
é where F is an estimate of {*, the optimal value of f over G. A summary of the known

P it. S

convergence results for this algorithm may be found in (2] and [10].

-
Vd
-
L4
Pd

3 The Lower Bound

A lower bound on the objective function of the equal [low problem, I1 or P1, can
be obtained by using the Lagrangean dual of the problem. The lower bound is used in
the step size determination, termination criteria, and determination of an initial equal
flow allocation for the upper bound procedure. Associating the Lagrange multiplier w,
with the kth equal flow constraint and defining the K-vector w = (w,, w,, . . ., W), the ;

Lagrangean dual for P1, referred to as problem DI, may be stated as

maximize h(w)
w e R¥
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where h(w) = min{cx + X, w(X,-Xx.,) | Ax = b, 0 < x < u}. Since Pl is a linear
program, it is easily established that the optimal objective values of Pl and D1 are equal
and that any feasible solution to D1 provides a lower bound on the optimal objective
value for problems Pl and 11. For any given value of the vector w, the Lagrangean re-
laxation is a pure network problem. The subgradient of h at a point w is given by the
K-vector

d = (XI - XK‘I' .o . .'XK - X,K)

where x solves the Lagrangean relaxation at w, given by
{min ex + I, W(X,-Xg.,) | AX = b, 0 < x < u).

ALGORITHM 1 assumed the function f{y) to be convex, whereas h(w) is piece-
wise linear concave. The lower bounding algorithm, ALGORITHM 2, modifies the
framework of the previous algorithm for a concave function. The step sizes used are
given by A, = p, and successive values of A, depend on the progressive improvement of
the objective and a parameter m*. As long as the objective function continues to im-
prove across m* iterations, the same value of the multiplier is retaincd. If the objective
does not improve over m* iterations, the multiplier is halved, and successive iterations
continue from the point where the incumbent best objective function value is found for
the previous value of the multiplier. The algorithm makes use of a scalar, UBND, re-
presenting an upper bound for the problem. Since the solution procedure progressively
improves both the lower bound and the upper bound for the cqual flow problem, each
time the lower bound algorithm is invoked the value for UBND is obtained from the
upper bound procedure. For this algorithm, we assume that both bounds are greater
than zero.

Several termination criteria are pertinent to the lower bound algorithm. [f the
value of the multiplier becomes negligibly small, further improvement in the lower bound
is negligible. Such termination criteria are relevant particularly to the initial invocation
of the lower bound algorithm since no valid estimate of the upper bound is available.

Further, the maximum number of iterations allowed in the initial invocation of the lower

bound procedure should be chosen to be larger than in subscquent invocations.
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ALGORITHM 2: LOWER BOUND ALGORITHM
I Initialization
Initialize UBND, step size p, m*, and tolerance €.
we—0me0d+— o00,] 0
2 Find Subgradient
IT«1+1.
Let x solve h(w) = min{cx + I, W,(X,-Xc.)| AX = b, 0 < x <u)}.
d — (X) = Xgaps o ooXg = Xa)-
Ifdll < |d')l,d « d, x’ «x
If d = 0, terminate.
If h(w) < LBND,
me—m+ 1,
ifm=m"p<p/2,w —«w'd~d*,m' « 0
otherwise,
m +« 0,
LBND « h(w).
w* - w
d* «d
If (UBND -LBND) < g¢(UBND), terminate.
3 Move to new point
(a)w < w + pd.
(b) If max{pd) < .005, terminate.
(c) Go to step 2 .

The choice of the initial value of p should be directed by the range of objective
function coefficients for the problem as well as an estimate of the elements of the vector
d. This choice can be made automatically when the Lagrangean relaxation is solved with
w = 0. Since it is the elements of d which cause the objective function coefTicients to
change in each successive iteration of the subgradient optimization procedure, an initial
value of p which keeps objective function coefficients from taking on values far away
from the original range is a prudent choice. Note that termination of the lower bound
procedure can occur when further changes in objective function coeflicients is minimal .

as in step 3(b).
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4 The Upper Bound

An alternate formulation of problem PI, referred to as P2, obtained by decompos-
ing the problem is given by

Minimize g(y)
s.t. YES

where for any vectory = (V,, V3, - - «» Y« )

g(y) = {mincx]Ax = b;0 < X < U} X, =Xy, =V, k=1,2,.. K},

and,
S=(yj0 <y <u,fork = 12,..K}

The decomposition assures the satisfaction of the equal flow constraints. The decom-
posed problem P2 is equivalent to the problem P [12] and may be solved using a spe-
cialization of the subgradient optimization algorithm. The objective function is
piece-wise linear convex and the subgradient n of g at a point y is obtained from the dual
variables, v, 1 = 1,2,...,2K, associated with the equal flow constraints in the subproblem,
referred to as P3 and given by,

Minimize 193

s.t. Ax = b
X = Y (v))
Xk«1 T 0% (vk-1)
Xx = W (vk)
X3k = Y (Vi)
0 <x<u

The K-vector

N = (Vitve. Vot Veas .o Vet Vi)

--------
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is a subgradient of g at'y = (y,,¥1.-,¥x)-
The dual variables v,, k = 1,2,...,2K may be easily constructed from the solution
to the pure network problem, referred to as problem P4;

{mincx| Ax = b,y < x < 0),

where the lower and upper bound n-vectors y and 0 are defined by

Y. = 06, =y, k=12,..K
Y™ 0)(4:: Y., k= 1,2....,1(
Y. = 0,0, =y, k =2K+1,..n

Let IT be the vector of optimal dual variables associated with the conservation of flow
constraints, AX = b in P4 and the arc associated with the variable x; be incident from

node j, and incident to node j,. The optimal dual variables for P3 are given by,
ve = I, + I, + ¢, k=12,.2K

In using the subgradient optimization algorithm for the decomposed problem at each
point y, the subgradient n can be calculated directly using the above development.

It is possible that moving a step along the negative subgradient yields a point which
does not belong to the set S. As pointed out in Section'II, this point is projected onto
the set S by means of a projection operation in the algorithm. For this model, the
projection operation decomposes on k so that Py] = (Ply, ], Plyi], . . ., P[yx]), where the
projections Ply,} are defined by:

Lo |

Ify, <0, Plyd = 0 :

Ify, > u,, Ply) = u,. 3

Ifo <y, <u, Ply =y .

The subgradient optimization algorithm for problem P2 makes use of a lower bound, ::;
LBND, on the optimal objective value which is used in step size determination using a A
variant of scheme (iii) given in Section 11, as well as in the termination criteria. Again, . 3
we assume that both bounds are greater than zero. A
X
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ALGORITHM 3: UPPER BOUND ALGORITHM
1 Initialization

Select y € S and construct y and 0.
Initialize LBND, ¢, q, n*, J « 0.
2 Find subgradient and step size
J«J+ 1
Let x and TT be the vectors of optimal primal and dual variables
for Min {cx] Ax = b,y < x < 0.
If cx > UBND,
n<n + 1,

ifn =n*q«q/2,n « 0

otherwise,
ne<a
UBND « cx.
If (UBND - LBND) < ¢(UBND) and x feasible, terminate with x optimal;
otherwise,

v < -I, + I, + ¢, k = 1,2,....2K.
N (MF Voo Vet V).
3 Move to new point
(a) y < Ply -q((UBND - LBND)/([in|)n}.

(b} If max (q((UBND - LBND)/(IInl9)n]); < .01 then terminate.
(c) Goto 2.

The use of the algorithm parameters q and n* is to help condition the step sizes
based on the relative norm of the subgradient with respect to the difference in the lower
and upper bounds. The norm of the subgradient is dependent on the problem rather
than the algorithm. That is, it is quite possible that the norm remains high throughout
the algorithm. The initial choice of q is directed by an estimate of the maximum of the
absolute values of the elements of the vector d’ as well as the objective function coeffi-
cient associated with artificial variables in the solution of the pure network problem.
When allocations yield infeasible solutions, the elements of n are large rendering ||n||?
very large. An initial value of q, if chosen arbitrarily, can be small, thus requiring more
iterations since the improvement at each iteration is small. On the other hand, if the

initial value of q is large, then for several sets of n* iterations no improvement in the
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objective occurs until the value of q becomes smaller. Here again, a secondary ternu-
nation criterion in Step 3(b) is when further changes in the allocation in step 3(a) arc
minimal.

The modification required for the integer problem occurs only when the termi-
nation criteria have been met for the linear problem. The alternate formulation for the
integer problem is obtained by requiring that the equal flow allocation, y be integral

Minimize g(y)

s.t. yes
where for any vectory = (y,, Y2 - - -, Yx )

g(y) = {(mincx|Ax = b;0 < x < u; X,=X«., =Y, k=1,2,..,K},
and,

S'={yl0 <y, £u,fork = 12,..,K andy integer}.

Once termination occurs for the linear problem, the upper bound algorithm can be usc..
by requiring that the projection in step 3 of the algorithm yield an integer equal fiow
allocation. Since the objective retains the piece-wise convex nature of the objective 1o
the linear problem, the linear optimum obtained can be expected to be close to the in-
teger optimum. Adjacent integer allocations can be expected to provide bounds on the

integer optimum or else be near-feasible points for the integer problem.

S _The Algorithm

The solution of the equal flow problem using decomposition, as given in the pre-
vious section can be implemented without the lower bound procedure. 1t s also possibic
to implement the lower bound algorithm independently for the purpose of obtaining a
lower bound on the optimal value of the equal flow problem. For the upper bound
problem, some measure of the lower bound on the problem must be used to aid in ter
mination. By merging the two procedures, an algorithm which adjusts the lower and
upper bounds progressively can be used to advantage and tied to the accuracy desire.!
for the solution. Not only can such a procedure be used for obtaining feasible solution:
with relative ease, but it can also provide a measurc of how closc this solution is to the
optimal.

The algorithm for the solution of the equal flow problem iterates between the lowe:
bound procedure and the upper bound procedure. The lower and upper bounds, LB\ D)
and UBND, progressively become tighter, closing in on the opumal solution to the

10
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problem. Each time the lower bound procedure is invoked, a maximum of ITERL iter-
ations are performed. Each time the upper bound procedure is invoked, a maximum of
ITERU iterations are performed. However, the initial invocations of the lower and up-
per bound algorithms are allowed to terminate using criteria in those algorithms as op-
posed to these iteration counts. The initial invocation of the Lagrangean dual is
important primarily because it affords a very tight lower bound on the objective value
of the integer or linear optimum and further it provides near-optimal values of the
Lagrange multipliers. The near-optimal values of the Lagrange multipliers tend to aid

the subgradient optimization of the decomposition model. The tuning parameters for

the algonthm are as follows: ITERL, ITERU, m*, n*, and € (the termunation criterion.)

ALGORITHM 4: RELAXATION/DECOMPOSITION ALGORITHM
FOR THE EQUAL FLOW PROBLEM
0 Initialization
Initialize ITERL, ITERU, €.
T~ 0R«<0we+< 0, UBND « oo, LBND « -cC.
Call ALGORITHM 2 and y, « min| u,, (X', +x'..0/2 ), k = 1L2,...,K.
Call ALGORITHM 3
I Compute Lower Bounds
(a) Call ALGORITHM 2 (Steps 2 and 3 (a)).
b) T—T+1
If T < ITERL, then go to step ! (a).
2 Compute Upper Bounds
(a) Call ALGORITHM 3 (Steps 2 and 3 (a)).
(b)) R~ R+
If R < ITERU, then go to step 2 (a).
3 Reset iteration counts

T « 0, R < 0, and go to step 1.

6 Computational Experience

The computer implementation of the algorithm is written in standard FORTRAN
(called EQFLO) and makes use of MODFLO {1] to solve pure network subprobiems.
Based on NETFLO (8], MODFLO 1s a set of subroutines which allows parametric

changes in costs, bounds and/or requirements for a network problem and subsequent
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reoptimization. Computational testing was carried out on the IBM 3081D at The Uni-
versity of Texas at Austin using the FORTVS compilerwith OPT = 2. In c-der to as-
sess the computational gains afforded by the decomposition/relaxation algorithm for the
equal flow problem, each problem was solved using MPSX [7]. All MPSX solutions
have been obtained on the IBM3081D at Southern Methodist University.

The algorithm has been tested on a set of 10 test problems generated by using
NETGEN (9], and referred to by their NETGEN numbers. Of the 10 problems used, the
first three are transportation problems (problems §, 9, and 10), the next four are capac-
itated transshipment problems (problems 20, 21, 24, and 25) and the last three are un-
capacitated transshipment problems (problems 28, 30, and 35). The test problems have
between 200 and 1500 nodes, and between 1500 and 6600 arcs. For each problem, the
first 2K arcs were paired to form K equal flow side constraints. In order to gauge the
performance of the algorithm for various values of K, some of the problems were gen-
erated using the same base network problem data with K varying from 75 to 200.

The benchmark NETGEN problems have a specified percentage of arcs which are
uncapacitated. For these arcs, the capacity was defined to be the maximum of all sup-
plies and demands. For arcs in equal flow pairs which emanate from supply points, the
capacity used is the supply at the point of incidence. Similarly, for arcs incident to de-
mand points, the capacity used is the corresponding demand. If an equal flow pair is
incident to a demand point or incident from a supply point, then the capacity assigned
is the upper integer ceiling of half the corresponding requirement. Such allocation of
capacity i1s prudent, allowing a tighter relaxation.

Table I details the computational testing of the algorithm with parameters and m*
= 5,n* = 10, ITERU = ITERL = 10, ¢ = .0l. For the test problems, EQFLO ob-
tained feasible solutions whose objective function values were within 1% of the optimal

in a fraction of the time required by MPSX to obtain an optimum. The table reports

*he total solution times required to produce an a percent solution for the linear equal
flow problem and an integer solution. The number of lower and upper bound
interations, respectively I and J, required are provided along with the norm, |{d’||, ob-
tained during subgradient optimization of the Lagrangean dual. Note that this norm
typically provides a metric for gauging the difTiculty of a specific problem instance. Be-
cause of the fact that the lower bound procedure does not enforce equal flow, the norm
provides a measure of the infeasibililty of equal flow constraints, or the amount of im-
balance which exists in the problem. The zero-tolerance used for flows on artificial arcs

is .05. Of the 10 problems, feasible solutions were obtained for all linear problems.
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Termination criteria employed for this computational testing are stringent and the de-
composition algorithm continues to attempt improvement until not only the solution is
within 1% of the lower bound, but also until changes in subscquent allocations are
negligible (.001).

Initial allocations, as determined by x’, obtain feasible solutions well within 1% of
the lower bound obtained in 6 of the 10 problems. For the other problems, the initial
allocation can be feasible or infeasible. Capacities in the randomly generated problems
are such that infeasibilty occurs due to the following: When a particular level of allo-
cation is enforced, the problem can become infeasible due to capacities falling below a
level required to ensure all demand be met.

An upper limit of 5 iterations were allowed in performing integer equal flow allo-
cations with the initial integer allocation obtained by truncating the optimal linear allo-
cation. No more than 29 units of demand go unsatisfied corresponding to 99.99%
feasible integer solutions well within [% of the lower bound obtained. The trade-ofT
between enforcing integer equal flows and 100% feasible solutions tips in favour of
making use of near-feasible solutions, given the relative computational ease with which
they are produced. Problem 5 was attempted with MPSX-MIP where integrality was
only forced on the 75 equal flow pairs. After over 220 seconds the active branch-and-
bound tree had over 2000 nodes and had not as yet obtained the first feasible integer
solution. In less than 9 seconds, the decomposition procedure obtained an integer sol-
ution which satisfied 399,996 units of the 400,000 units of demand.

To determine the impact of an increase in the number of side constraints on prob-
lem characteristics and the algorithm, additional testing with 21, 24, and 28 is reported
in Table II. Each of these base problems was used to generate equal flow problems with
75, 100, 150, and 200 equal flow constraints. As evident from thc behavior of the norm
of &', as the number of side constraints increases, more imbalance in the problen is in-
troduced and in order to enforce equal flow, more effort is required. Problem 24 be-
comes infeasible once the number of side constraints enforced becomes 200. As would
be expected, the algorithm expends more effort for the more tightly constrained prob-
lems, with the exception that it recognizes an infeasible problem readily. Again, for the
problems which are feasible, near-feasible integer solutions arc obtained in approxi-

mately 1°5-60% of the time required to solve the linear problem using MPSX.
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7 Summary and Conclusions

The equal flow problem lends itself to solution by decomposition and relaxation.

d
)
b
&
:
\

The use of these techniques in the solution procedure developed is advantageous because

5%

the essential solution mechanism required is the solution of sequences of pure network
problems. By dispensing with the working basis required by other techniques, not only
are computational efficiencies afforded but the natural characteristics of the problem
enhanced.

The algorithm has been shown to assist in solving the integer equal flow problem.

NN

LS

The lower bound automatically produces integer flows and the projection of the sub-
gradient in the upper bound routine is altered to require integrality on the equal flow
allocation once a near-optimal linear solution has been obtained. The equal flow allo-
cation for the linear mode] is expected to be close to the equal flow allocation for the
integer model due to problem structure. Thus the solution procedure provides near-
feasible, near-optimal solutions for the integer equal flow problem efliciently.

The structure of the equal flow problem provides a metric on the relative difficulty
of any specific problem instance. The proposed solution procedure has the innate ca-
pability to distinguish between easy and difTicult instances of an equal flow problem and
thus can require only 1% cf the MPSX time to salve an easy problem. As the number
of equal flow constraints grows, a problem can become progressively infeasible, since the
enforcement of equal flows can serve to reduce the capacity of a cut-set of the network
to well below required levels for feasibilty. The development for the linear equal flow
problem in this paper can be instructive in modelling and solving other network prob-
lems with specially structured side constraints such as proportional flow models used in
manpower planning. The solution technique is best suited for a real-world situation in

which one must quickly produce near-optimal, near-feasible solutions.
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Table 1. Comparison of EQFLO with MPSX (All Problems lave 75 equal flow pairs).
o NETGEN MPSX LINEAR INTEGER
Number Nodes  Arcs Time a iIdll |G | Time Infeas Time
5 200 3100 11.4| 0.15 377 151 1 8.6 4 8.8
9 300 6395 38.41 0.01 1296 145 1 19.6 3 19.9
10 300 6611 34.2( 0.00 698 165 | 15.3 3 15.7
® 20 400 1484 348; 0.10 4729 544 262 233 2 23.6
21 400 2904 73.8( 0.00 I 6 1 00.7 ] 1.1
24 400 1398 37.8{ 0.29 8875 280 498 214 3 21.7
25 400 2692 93.0] 0.01 8356 148 ] 5.7 ] 6.3
2R 1000 3000 5281 0.14 3865 235 220 278 29 283
30 1000 4500 69.6| 0.00 490 95 1 7.9 0 79
35 1500 5880 145.21 0.09 5386 218 151 46.7 6 47.7
L 4 591.0 177.0 181.0
Times reported are in CPU seconds on an IBM3081D
o Table lI. Effect of Increasing the Number of I.qual Flow Pairs.
NETGEN MPSX LINEAR INTEGER
Number Pairs Time a ) I ] Time Infeas Time
© 21 75 73.81 0.00 1 6 |1 00.7 I [.1
21 100 64 8{ 0.00 1 6 1 H0.R 1 1.1
21 150 8341 0.08 880 130 202 146 2 15.1
21 200 76.2( 0.47 2937 214 188 17.5 26 17.9
24 75 3781 0.29 8875 280 498 214 k! 21.7
24 100 36.0] 0.53 18283 240 307 19.8 5 19.9
24 150 42.0) 2.32 24867 258 50S 30.7 Ry 30.9
24 200 infeasible infeasible
28 75 52.8| 0.14 3865 233 220 278 29 281
28 100 57.6] 0.23 5206 213 182 283 35 289
28 150 65.4| 0.30 6043 202 179 30.4 45 309
28 200 72.01 1.00 15206 224 423 50.5 49 51.0
¢ 661.8 262.5 246 .8

Times reported are tin CPU seconds on an IBM3081D




CHAPTER 6

A PARALLELIZATION OF THE SIMPLEX METHOD

by
R.V.Helgason*,J. L. Kennington *, and H. A. Zaki **

February 1987.

ABSTRACT

This paper presents a parallelization of the simplex method for linear programming.

Current implementations of the simplex method on sequential computers are based on a
triangular factorization of the inverse of the current basis. An alternative decomposition
designed for parallel computation, called the quadrant interlocking factorization, has pre-
viously been proposed for solving linear systems of equations. This research presents the
theoretical justification and algorithms required to implement this new factorization in a

simplex-based linear programming system.
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I. INTRODUCTION

The introduction of parallel computers into scientific computing in the past decade
is the beginning of a new era. The invention of new algorithms will be required to ensure
realization of the potential of these and future architectural improvements in computers.
Already the use of parallel computers has given rise to studies in concurrency factors,
vectorization, and asynchronous procedures. These have led to multifold increases in
speed over conventional serial machines after the calculations have been rearranged to
take advantage of the specific hardware. This paper presents a parallelization of the sim-
plex algorithm for general linear programs. Our work begins with new results for solving
svstems of linear equations and is directed toward the hardware design currently adapted

by Sequent Computer Systems, Inc. of Beaverton, Oregon.

The following notation is used throughout this paper. Let B;.; x,; represent a subma-
trix of B composed of rows i through j and columns k through . If i=j (k=/), we write
B k1 By i) The j* row (column) of B is denoted by Bj (B ;). The i,j'h element of
BisB, .

The linear programming problem is represented mathematically as follows:

minimize c¢Tx
subjectto Ax =b
0<x<u,
where A is a known m by n matrix, all other quantities are conformable, and all vectors
are known except x.
The upper bounded version of Dantzig's simplex method for solving the linear pro-

gramming problem may be stated as follows:

Algorithm 1.1 - The Simplex Method
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~ 0. Initialization
‘ Let [xB1xN] be a basic feasible solution with A = [B IN]. Let the cost vector
< [c® [c¥] and bounds [u? 1u¥] be partitioned similarly. Assume that B-! is avail-
; 3 able in some factored form. Initialize iter to O and the reinversion frequency,
freq.
- 1. Calculate the Dual Variables (BTRAN)
-
B m e cBB-1. (1.1) °
o
o 2. Pricing
= LetK)={j:x) =0and ¢} —nN ; < 0},
andK2={j:xf‘]=uf‘/andcf’—nN“j>O}. i
-
- If K1\ K=, terminate with [x8 |xN] optimal;
- otherwise, select ke K1) K2 and set
[
1,if keK
S« )
-1, otherwise.
. . >
3. Column Update (FTRAN)
v« B-IN (1.2)
4. Ratio Test [
- _ xB
- A« min —L e
= sign(y,)=sign(®) ( ly; |
B_,B  J
Ay min o/ BT
sign(y,) = sign(-9) ij' !
| N
Ae—mim Ay, Ay, ui .
J s
-
X 5. Right Hand Side Update
y
S )
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xf¥ « xN+AS

xB « xB - Ady.
N
IfA=u;,returnto 1.

* 6. Basis Inverse Update

Let p denote the index of x5 which produced A and set

=yilyp ,if i#p
1y, ; otherwise,

B! « EB (1.3)

7. Reinversion Check
iter « iter + 1.
If mod (iter freq) =0, then refactor B-.

Return to 1 using B~! as B-1, the current basis inverse.

Two of the most common factorizations of the basis matrix inverse are the product
form and the elimination form, which correspond to the methods for solution of linear
equations known as Gauss-Jordan reduction and Gauss reduction (LU factorization),
respectively, where L is a lower triangular matrix and U is an upper triangular matrix.
The elimination form produces a sparser representation of the basis inverse than the pro-
duct form, and accordingly leads to faster implementation of a simplex iteration and a

considerable savings in storage.

Historically, the elimination form of the inverse, due to Markowitz [1957-1], was
the first LU factorization method and was introduced to preserve sparsity during reinver-

sion. However, once reinversion was completed further pivot operations were handled

St st iinle ah o




using product form. Bartels and Golub proposed updating L and U in a numerically
stable way, (see Bartels [1971-1]). Their updating scheme tends to promote the growth of
nonzeros in U, leading to a potentially severe loss of sparsity. Forrest and Tomlin [1972-
1] designed a different updating scheme for the triangular factors to preserve sparsity at
some sacrifice in numerical stability. Subsequent implementation of the Bartels-Golub
method, designed by Reid [1982-1] and Saunders [1976-1], combine the virtues of accu-

racy and speed.

Several parallel versions of the LU factorization algorithm for solving general linear
systems of equations are presently available (Chen et al. [1984-1] and Dongarra and
Sorensen [1984-2]). All versions are based on restructuring the original serial algorithm

to reveal possible independent tasks that can be carried out concurrently.

Evans and Hatzopoulos [1979-1] proposed a matrix factorization, called the Qua-
drant Interlocking Factorization (QIF), as an appropriate tool for solving linear systems
on parallel computers. The QIF is similar to the LU factorization, but is claimed to be

more suitable for concurrent computation.

This paper presents a parallelization of the simplex method using the QIF. The out-
line of the paper is as follows. In Section II, the QIF is developed. An algorithm for
updating the QIF of B-! is presented in Section III. Mathematically, the problem is to
efficiently obtain a factorization of B~ (see step 6 of Algorithm 1.1) from the factoriza-
tion of B-1. In Section 1V, we develop a parallelization of the reinversion routine used in
step 7 and propose a parallel implementation of both the BTRAN and FTRAN operations

of steps 1 and 3.

The parallel algorithms presented in this study are designed for a MIMD parallel
computer that incorporates p identical processors sharing a common memory and capa-
ble of applving all their power to a single job in a timely and coordinated manner. The
Balance Systems 8000 and 21000 from Sequent Computer Systems are examples of such

machines.




I1. THE QUADRANT INTERLOCKING FACTORIZATION
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b In this section we describe a matrix factorization suggested by Evans and Hatzo-
poulos [1979-1] known as the Quadrant Interlocking Factorization (QIF). This decom-
position is designed to solve linear systems on parallel computers (see Evans and Hatzo-
h poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1] and Feilmeier [1982-
11). The factors and some of their characteristics are described in Secdon 2.1. We show
that any nonsingular matrix can be factorized into its QIF in two ways, the Forward QIF
and the Backward QIF The factorization algorithms are developed in Sections 2.2 and

2.3. The relationship of quadrant and triangular matrices is presented in Section 2.4.

2.1 The Quadrant Interlocking Factors

Consider the following matrix

1 0 0 0
w2l 1 0 W
w3l Wi Wim-1 Winm
W = (2.1
Wm-21 Wm-22 - . - Ym-2m-1 Wm-2,m
Wm-1.1 0 1 Wm-1m
0 0 0 I
Note that the non-arbitrary entries of W are given by
1, i=y,
w,, =4 0.i=1.Im2}, j=(i+]),....(m=i+]); 2

where

JJEm=i+1,00

.......
--------

..1;

e



{v] = the largest integer not greater than the value of x
m=m+1-[m/2).

Also. consider the matrix

Note that

J=lolon=102), i=j+l,.m—j;
(2.4)

t J =[m 121+2,...,m ,i=m +2—j v~"j_1'

Any square matrix may be partitioned by its diagonal and secondary diagonal into
four quadrants. The potentially nonzero elements of W are in the left and right quadrants
while those of Z are in the upper and lower quadrants. Therefore, we call any square
matrix whose nonzero structure follows (2.1) and (2.2), or one that can be brought to
such a form by row and/or column interchanges a left-right quadrant (LRQ) matrix.
Similarly, any square matrix whose nonzero structure follows (2.3) and (2.4), or one that
cdan be brought to such a form by row and/or column interchanges is called an upper-
lower quadrant (ULQ ) matrix . Examples of W and Z matrices for an odd and an even m

are given below:

Example 2.1 (m=5)




9

[ 1 [ T
1 0 0 0 O 211 212 213 214 215
wap 1 0 0 was 0 2221223224 0
W=lwi; w3zl wygwss] ,Z2=| 0 0 z33 0 O
W41 0 0 1 was 0 242 243 244 0
0 0 0O 1 251 252 253 254 255
] 1 I )
Example 2.2 (m=6)
) 0 00 0 O Z11 21,2 213 21,4 215 216
wa; 1 00 0 wze 0 292223224225 0
' waip win 1 0 wis wag 0 0 z33z34 0 O
W= Wga 1 W42 01 W45 Wqe6 ’Z= 0 0 243 244 0 0
W 0 00 1 wWs g 0 252 253 254 255 0
\. 0 0 00 O 1 26,1 262 263 264 26,5 26.6

Without loss of generality we assume that m is even. For linear programming, we
can always append a nonbinding constraint so that the total number of constraints is
even.

The set of all LRQ matrices of order m is denoted by {My%} and the set of all ULQ
matrices of order m is denoted by {MZ). Let A ¢R™™ and A_=A,-‘j €; .eJT. If
(A +] )e{M,y;) we say that A, ; is a W-element ; otherwise, it is a non-W-element . Simi-
larly, ifA_E{M,;} we say that A; ; is a Z-element ; otherwise, it is a non-Z-element.
Proposition 2.1
(Mx) and {MZ ]} are closed under addition, scalar multiplication, multiplication and

inversion .

(The proof of this Proposition may be found in Zaki [1986-1)).

2.2 The Forward Quadrant Interlocking Factorization Algorithm

In this section we present an algorithm which obtains the WZ factorization of any

nonsingular matrix. That is, given a nonsingular matrix B, find W and Z such that

B =WZQ, where Q is a permutation matrix. This factorization is analogous to the LU
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factorization in common use in many production linear programming packages.

Definition 2.1

An elementary left-right quadrant (ELRQ) matrix of order m and index k is a matrix of

the form:
Nk =] —uk-ef —vk-ef (2.5)
where
l=m-k +1 Lk el2,....om/2)-1, (2.6)
el u* =0 and elvk=0 fori=12,..k[,I+],..,m. Q2.7

The conditions (2.7) require that the first k¥ and last k components of u* and v* be zero,

that is, «* andv* have the form:

uk =(0,0.....0,uf ufsq, .. uk_4,0,0,...,0)7 (2.8)
v" = (0,0,...,O,Vfﬂ ,Vf*z, ey V,I,‘,_k ,0.0,...,0)T. (29)

In general an ELRQ matrix of order m and index k has the form depicted in Figure
2.1. Thus. an ELRQ matrix of index & is a LRQ matrix whose only nonidentity columns

are columns & and / (/=m-k+1). ELRQ matrices are easily inverted. It is apparent that

-1
[N") =] +uk-ef +vkef (2.10)
which is also an ELRQ matrix of index k.
Proposition 2.2

Let
N® = NINZ... Nk (2.11)

where A* is an ELRQ matrix of index i, i=1,2.....k. Then N%) js a LRQ matrix whose

J' and (im—-j+1)" columns are those of N/.

(The proof of this Proposition may be found in Zaki [1986-1]).

Definition 2.2

W
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A partially reduced upper-lower quadrant (PRULQ) matrix of index k and order m is a
square matrix whose non-Z elements are zero in columns 1 through k-1 and /+1 through
m, where k =1,2,..,m/2 and | =m—-k+1. Its general form is shown in Figure 2.2. Note
that B’ has no special zero structure and 872 is an ULQ matrix.

Propositon 2.3

Let B* be a PRULQ matrix of index k. If B* is nonsingular then there exist j, and j,

such thatk <j, < j, </ and

5 = B!.j, .B[k_h—Bf'jz .B/‘__,'l = 0. (2.12)
Proof

Suppose 8=0 for every k<j<j<l. Then Bf . must be a multiple of Bf . This contradicts

the assumption that B* is nonsingular.

Permuting the columns of a PRULQ matrix so that certain elements provide a non-
singular 2x2 submatrix is analogous to interchanging rows and columns in matrix inver-
sion to obtain a nonzero pivot element. Now, let BX be a nonsingular PRULQ matrix of
index k. Let j; and j satisfy Proposition 2.3 and define Q* to be the permutation matrix
such that

B* =Bk Qlc
where

B* =B, and B =B%,. (2.13)
Let A be any square matrix of order m and let kg{1,...,m/2)}. Define S¥(A ) to be the fol-
lowing 2x2 principal submatrix of A
Ak Aky
k - " )
Sk(A)= [A“ AuJ (2.14)
where [ =m—k+1. Using these definitions and Proposition 2.3, it is clear that

B* = B* Q% is a nonsingular PRULQ matrix of index k and S*(B*) is nonsingular.

We now show how one may transform a PRULQ matrix of index k into a PRULQ

e e JE 30 DS ]

h 2 e P
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 d
Cd
\d k I}
o
1 0 k
—ufs -vkn
Nk = I ’
. —uk -V &
0 1 !
; Figure 2.1. Illustration of the ELRQ matrix of order m and index k.
# k {
. X b ¢ X x X X
J
. x | x x | x
3 X X k
X X ! !
; x | x x | x
X x | x x | x X

Figure 2.2. Hiustration of a PRULQ matrix of order m and index k.
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matrix of index k+1.

Proposition 2.4

Let B* be a nonsingular PRULQ matrix of index k and let Q% be the permutation matrix
that interchanges columns & and m—~k+1 with columns j; and j,, respectively, where j,
and j, are obtained so that they satisfy Proposition 2.3. Let N* be an ELRQ matrix of
index & whose u* and v* vectors are determined by solving the following (m -2k ) 2x2

linear systems
L] sran=[Bh BE] ek (2.15)

Then B*+1 = Nk B* Ok is a nonsingular PRULQ matrix of index k+1.

Proof

Since B* is nonsingular and N* is nonsingular, then B%*! is nonsingular. B%+! is a
PRULQ matrix of index k+1 if all non-Z-elements in columns 1 through & and / through
m are zero. Since B* is a PRULQ matrix of index k , we only need to show that the
effect of N* on B¥ is to zero out the non-Z-elements in columns &,/. To show this, we
begin by rewriting (2.15) as

B« Bh o
[u{‘ \',"J = [Bf.k B/‘J}

Bk, Bl
orfori =k+1.k+2,...m—k
uk - Bf, + vk Bf, =Bk (2.16)
u‘k.B-t.l.’.U.k-B-f'I:B.‘k'[. (217)

: . k
We now consider the non-Z-elements of B ;1.

Fori =k+1k+2,...m-k

Bl =Nt - BY

= —uk- Bl ~ vk Bfy +BFy =0 by (2.16). (2.18)
Bli' =Nk - BY
=—uk- Bl -vk Bl +BK =0 by(2.17) (2.19)
STy A A . LN T T S e S e s
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B}V =N; -B¥; =0 forj=l1,..k-1and/+1,..m. (2.20

Also we note that the desired zeros created in earlier stages in B* are 1. .1 affected by 't

,since fori=1,.. k-1,/+1,...om

Bk*' =Nk Bk =¢, - B* =Bf . (2.21)

‘:f From (2.18) through (2.21) we conclude that B¥*! is a PRULQ matrix of index k+1.

Given the above definitions, the forward quadrant interlocking factorization algo-

rithm may be stated as follows.

Algorithm 2.1 : The Forward Quadrant Interlocking Factorization

X Let BeR™ ™ _ The following steps decompose B to its quadrant interlocking factors with .

- B=W2ZQ.

Initialize

Bl=8B,
K=m/2.

Main Loop

PAP

1. Column Permutation
Find j, and j, satisfying Proposition 2.3.
If none exists, then terminate with the conclusion that B is singular. -
Otherwise, construct Q* using j; and j;.
2. Compute the vectors u* , vk
- by solving the (m -2k ) 2x2 linear systems, (2.15). -
- 3. Construct N*

Nk =] —ukel —vkef.
4. Construct Bk+1 -

N Bk+l = Nk Bk Qk-
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Proposition 2.5

Let B be a nonsingular matrix of size m. Then Algorithm 2.1 decomposes B to its for-

ward quadrant interlocking factors ,

B=WwW2ZzZQ (2.22)
where
(HWe My} W= (NK—INK—Z < N1
(2)Ze (M%)} ,Z =BX and
(3) Qs a permutation matrix , Q = (Q!Q2--- QK-1)-1.
Proof

Let B! = B. Applying Proposition 2.4 for k =1,2,...,(m/2)~1, we obtain
BXK = NK-INK-2...N1B1Ql...QK-20QK-1, (2.23)
where BX is an ULQ matrix, N/, j =1,..,K~1 are ELRQ matrices as computed in (2.15)
and Q/ are permutation matrices. From (2.23),
Bl = (NK—I NK-2 .. .Nl)—l BK (Ql ce QK—2 QK—I)-I_ (2.24)
Let NK-D = (NK-I NK-2... N1)-1 By Proposition 2.2 N-1) is a LRQ matrix. Also,

let QK-D=(Q! - QK-2QK-1y1 Since the product of permutation matrices is a per-

mutation matrix, Q K-1) is a permutation matrix. Thus, (2.24) can be written as

Bl=B =NK-1) gk p&-1) (

!J
2]
N
~—

and (2.22) follows by setting W = N&-1) Z = BK 'and Q = QK- in (2.25).

Proposition 2.6

Algorithm 2.1 without column permutations requires

m3f3+m22-4m/3

-
<«

multiplications on a sequential machine.
Proof

Ignoring column permutaiions, we trace the operations in the main loop excluding step 1

......................................................
............................

. e
I PN\ 5 B




PO AL AL A AR A A ol b aPE AR SRR VL A L R ) LA SN N A N A S A -

-15-

The number of multiplications to compute u* and v*

K-1
=v[2 -
: gﬁ[ + 6(m-2k)]
2  =m +3m@m-=2)2. (2.26)

The number of multiplications to compute B*+1

: K-1 )
[- =2 =2k
. k; (m )

=m.(m=-1).(m-=-2)/3. 2.27)
Summing (2.26) and (2.27) we obtain the specified total number of multiplications.

In Algorithm 2.1 the columns of the PRULQ matrix are permuted to find a 2x2

' matrix with a nonzero determinant. There are obvious alternatives that may be used. To
ensure numerical stability for instance, we may find the matrix whose determinant has

the largest absolute value, or the matrix that has the smallest condition number. Another

approach is to permute the rows of the PRULQ matrix to find the required nonsingular

2x2 matrix attempting to minimize fill-in in the nonpivot rows. Both row and/or column

permutations can be selected on numerical stability and/or sparsity grounds.

2.3 The Backward Quadrant Interlocking Factorization Algorithm

Unlike the triangular factors (L,U) of a matrix, the quadrant interlocking factors
(W,Z) possess different potential density. That is, the number of potentially nonzero ele-
ments in W is different than that in Z. In this section we present an algorithm which
obtains the ZW factorization of any nonsingular matrix. We refer to this algorithm as the
Backward QIF algorithm, as opposed to the Forward QIF algorithm of Section 2.2 that
‘, produces the WZ factorization. The development of this algorithm is very similar to the

previous one. The proofs of Propositions 2.7 through 2.10 in this section, use arguments

similar to those used in Propositions 2.2 through 2.5 and hence are omitted.

ca e S P T CrT S T TrTN N e e e . e et Rt a e e te e ML RS Y e e -~ °. .-- --- .'. S ..
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Dcfintion 2.3

An elementary upper lower quadrant (EULQ) matrix of order m and index k is a matrix

of the form :

Mk=1], —rk-ef —skel —e,-ef —e;-ef (2.28)
where

l=m-k+1 kel,2,---m/2,
el rk=0 and els*=0 fori=k+1,k+2,..1[ (2.29)

The conditions (2.29) require that components k+1 through m-k of r* and sk be zero,

which are the non-Z-elements of r* and s* in M*. Thatis, r* and s have the form :

rk = (rl;,...,rf,(),...,O,r[‘,...,r,f,)T (2.30)
sk = <.s«§ v SE0, 08 s KT (2.31)

Thus, an EULQ matrix of index k and order m is an ULQ matrix whose only nonidentity

columns are columns k& and / (/=m-k+1). In general, it has the form depicted in Figure

2.5

The set of all nonsingular EULQ matrices is closed under inversion, and the inverse
of any nonsingular EULQ matrix of index k is another EULQ matrix of index k.

Pronosition 2.7

Let M*) = ArkArk-1 ... M1 where M! is an EULQ matrix of index i, i=1,2,....k. Then
M &) s a ULQ matrix whose j* and (m—j+1) columns are those of MJ , j=1,2,....m/2.
The proof is similar to that of Proposition 2.2.

Definition 2.4

A partially reduced left-right quadrant (PRLRQ) matrix of index k and order m is a
square matrix whose non-W-elements are zero in columns k+1 through m—k. Note that

B ™2 has no special zero structure and B! is an LRQ matrix. In general, a PRLRQ matrix
P g

is of the form shown in Figure 2.4.
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Figure 2.3.

Hlustration of the EULQ matrix of order in and index k.

[

88 .

o

Figure 2.4.

Ilustration of a PRLRQ matrix of order mm and index & .
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Proposition 2.8 .
. (%
Let B be a PRLRQ matrix of index k. If B is nonsingular then there exist j; and j2 .
suchthat 1< jy<kand / £j,<m and \
Y
o ’ 5 = Bt.j; 'B[‘.jz —Bf_jz ‘B/"j1 2z 0 (232) p
The proof is similar to that of Proposition 2.3. i
Now let j; and j, satisfy Proposition 2.8 and define P¥ to be a permuted identity :
® matrix with column j; in the k% position and j; in the /. Let B* be a nonsingular [
PRLRQ matrix of index k. Obviously, B¥ = B¥ P* is a nonsingular PRLRQ matrix of
index k , and S¥(B*) is nonsingular. .
\ Using M* of (2.28) and the P* defined above, the elimination operation needed to s
reduce a PRLRQ matrix of index k a step further is given by the following Proposition.
Proposition 2.9 N
Let B* be a nonsingular PRLRQ matrix of index k , let j; and j; satisfy Proposition 2.8, K
let P* be the permutation matrix that permutes columns k and j; and columns m—k+1 -
and j.. Let M* be an EULQ matrix of index k whose r*,s¥ vectors are determined by :
solving the following 2k -2 linear systems .
{ rk s,"] S(BY = [é,’ﬁk B’f,,] Li=1,..k~1and [+],..,m (2.33) -
along with the system [
rk sk [ . ]-1 3
- k(pk .
LY
Then B%-1 = M* Bk Pk i5 a nonsingular PRLRQ matrix of index & -1. p
4
L
Given the above definitions, we may state the backward QIF algorithm as follows: ;
Alporithm 2.2 : The Backward Quadrant Interlocking Factorization L J
Let BeR™ . The following steps decompose B to its QIF withB =Z W P :‘

N
~
o
.
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v
k)
A Initialize
J (4
Bm2=B,
- K=mn.
. Main Loop
Fork =K K-1,K-2,..1 K

1. Column Permutation

o Find j; and j, satisfying Proposition 2.8.

. If none exists, then terminate with the conclusion that B is singular. ’
Otherwise, construct P* using j, and j,.

2. Compute the vectors r* |, sk

by solving the (2k —1) 2x2 linear systems (2.33) and (2.34).

(9]

. Construct M«

) Mk =1, ~rkel —skefl —e,-ef —e;-ef.
4. Construct B+-1

'_ Bk-1 =Mk Bk pk.
Next k

Proposition 2.10

Let B be a nonsingular matrix of size m. Then Algorithm 2.2 decomposes B to its back- i

ward QIF,

B =ZWP (2.35) :
where

(W Ze (ML} ,Z=MIM2-- - MKy
Q) We (MY} ,W =Bland
(3) P is a permutation matrix , P =(PK ... plyL,

' The proof is similar to that of Proposition 2.5.

As with the Forward QIF Algorithm, row and/or column permutations can be

: adopted to ensure numerical stability and/or sparse factors.
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- 2.4 Some Characteristics of Quadrant Matrices
In this section we reveal a relationship between the quadrant and triangular
matrices, which has not previously appeared in the open literature (e.g. Evans and Hatzo- :
o poulos [1979-1], Evans and Hadjidimos [1980-1], Evans [1982-1], Feilmeier [1982-1], ;
Hellier [1982-1], and Shanehchi and Evans [1982-1]). A permutation algorithm that res-
! tructures any quadrant matrix as a block triangular one is presented.
v Consider the following matrices
! i 7 :
: 10xx.xx 3
‘ X X lxx . xx -
- X x 10.xx N
L oo lxxxx . I . xx \
1 Z=1Xx XXX , W= R (2.36¢ N
[ X
! XXXxXx XX R
XxXxx XxX 10
1 .
L J .
Where x stands for a potential nonzero element. Note that Z is a lower Hessenbery p
matrix with a special zero distribution on the superdiagonal. Also, W is a unit upper tri- P
angular matrix with special zero distribution on the superdiagonal.
Now we present an algorithm that relates W of (2.1) and Z of (2.3) to W and Z o J
(2.36). :
Algorithm 2.3 : The Permutation Algorithm ’
Let R,S.and T be square matrices of order m, where R is the input matrix to the algo
rithm and T is the output matrix. The following algorithm permutes the columns and «
>
rows of R such that: "
(a) if R is a LRQ matrix then T is a W of (2.36), and :
(b) if R is a ULQ matrix then T is a Z of (2.36). 7
»
3
1. Column Permutation N

-

For j=1,2...., mi/2




-
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S m-2j41 &« R ;
S.m-2j+2 « R m_jn ’
Next j
2. Row Permutation
Fori=1.2,...m/2 -
Tm-2is1, &« Si,
Tm—?i+2,. « Sm-—i+1,.
Next {
’
An example of the permutation algorithm is given below for m=6.
's
Example 2.3 (m=6)
1 0 00 0 O 10 w3z wis wiy wag
H‘Z'] 1 0 0 O W2‘6 O 1 W4'2 W4‘5 W4.1 W4'6
, W ‘1'3‘2 1 O Wias “'3,6 . O O 1 0 W2,1 W2'6 ‘
W= W4 W42 01 W45 W4p W= 00 O 1 w51 Wse|®
WS 0 00 1 Wse 00 O 0 1 0
0 0 00 0 1 0o 0 0 0 1
] ] L :
- - - - V)
10212213 214 215 216 233234 0 0 0 O
0 222223 224 225 0 243 24,4 0 0 0 0
0 0 233 234 0 0 n 223 22'4 22’2 22_5 0 0
2510 0 243244 0 0| *%2=|253 254 255255 0 O | ,
0 257 253 254 255 0 213 214 212 215 21,1 216
261 76,2 263 264 265 26,6 263 264 262 26,5 26,1 26,6

This clearly shows that the quadrant matrices are permuted block triangular
matrices with blocks of size 2. That is, the Forward (Backward) Quadrant Interlocking
factorization is equivalent to a block Doolittle (Crout) decomposition with blocks of size

By

On sequential computers, a QIF is not expected to be faster than any triangular

G oae .

P co L _“‘- "..'_.."..".. Ce e, ,'».‘_: _‘-“_~ R T . R S I
e A A A A s et T L TR TR Y X ¥ T A Y S e T - n

. 8



-21- *
decomposition. Since computing the entries of the factors by solving 2x2 systems -
o
requires more operations, as shown in Proposition 2.6. Also, finding a nonsingular 2x2 .,
&,
submatrix is more expensive than finding a nonzero element. However, on parallel com- b
'
puters, the QIF is expected to be competitive. Since the number of entries that can be -
‘ - <
produced concurrently in every stage is doubled, and the number of stages is halved as .
compared to a triangular factorization algorithm. Therefore, we may view the column -
permutation step in Algorithms 2.1 and 2.2 searching for a nonsingular 2x2 submatrix as -
- .
a computation decoupling price we pay for the concurrency gained in steps 2-4. ’
Determining the relationship between quadrant and triangular matrices is a key
observation that we will use in the following section to design appropriate updating
scheme for the quadrant interlocking factors of the basis matrix in the simplex method. -
o
\.
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| III. UPDATING THE QIF OF THE BASIS

At the beginning of a simplex iteration, suppose the basis has the form
3 B=ZWR, 3.1

where we assume forms (2.36) for Z and W, and R is a permutation matrix. When the
entering column A ; replaces the leaving column B , at the end of the simplex iteration,
we have a new basis matrix B which is related to the previous basis matrix B by the for-

mula

B=BE (3.2)

where E is an eta matrix whose p* column is (B~! A .;j)» and all other columns are the

identity columns. From (3.1) and (3.2) B can be written as

. B=ZWRE. (3.3)

An updating scheme is a sequence of operations applied to the right side of (3.3) to

return it to the form given by (3.1), i.e.

B=ZWR, (3.4) :

; where W , Z are the new Q.I factors and Risa permutation matrix. We present an algo-
rithm designed to derive (3.4) given (3.3). It is similar to the Forrest-Tomlin [1972-1]
update for the triangular factors of the basis. Since the spike is in W, our strategy is to
reduce the spiked W, i.e., WE, to an LRQ matrix using elementary ULQ matrices. The - ‘
following algorithm exploits the triangular form of W and the existence of 2x2 identity 1

blocks on the diagonal of W .

In this presentation we use the term brother columns (rows) to indicate columns

(rows) that have the same potential nonzero structure, execluding the diagonal entries in

case of LRQ matrices. Thus, for LRQ matrices in the form of (2.36) columns (rows) A
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i,i+1 are brother columns (rows) fori=1,3, - - - m-1. ;
) &
The first step of this scheme is a column permutation followed by a row permuta-
&
tion. In Figure 3.1 an example is presented to illustrate this step, in which R of (3.3) per- 2
N
mutes columns 2 and 4 of W and x stands for potentially nonzero elements. Thus, W and N
. LV
WR are as illustrated in Figure 3.1 (a) and (b). From (3.3) we obtain 4
Z1'B=WRE
=S,
@
where S is illustrated in Figure 3.1 (c) and y stands for the elements of the column vector -3
(Z-'A ). Note that if (Z=1 A ) has the same zero structure as W o, then the new fac- .
tors are immediately available. That is, W is S and Z is Z. If this is not the case, we r
place S in a spiked-W form S as shown in Figure 3.1 (d), by applying the column permu-
tation R~1 1o S to undo the effect of R . That s,
Z'BR'=WRER"!
=S R
=S. 3.5)
Suppose ¢ < m—1. We apply the column permutation R to S, placing the spike and the
brother of the leaving column in the positions m and m -1, respectively, and moving all "
intervening columns forward to produce the matrix H9, as illustrated in Figure 3.1(e).
We then apply the row permutation R ~! to H9 placing the g row and its brother row in R
positions m and m-1, respectively, moving all intervening rows two places up to pro- ®
duce the matrix H9 as shown in Figure 3.1 (f), where
-~ _1q,ifqis odd; ;
9 =)qg-1,if g is even. )

Note that ¢ is odd. Of course, if ¢ 2 m-1, then R =1.Now (3.5) becomes

E'Z'BR1R=R-'WRER-ER ]
=R 'SRR o,
=R-'SR




L
o
o
E
l:
-

loxxxxxx Ixxoxxxx 1yxoxxxx loxyxxxx loxxxxxy loxxxxxy
Ol xxxxxx oxx Ixxxx oyx1xxxx olxyxxxx olxxxxxy 0lxxxxxy
ooloxxxx | ooloxxxx | oyloxxxx | oolyxxxx | ooxxxxly | ooloxxoy
o’ 0001xxxx olooxxxx OyOOXXXX O00YXXXX OOXXXXOY 0001xx0y
:'. ooooloxx | ooooloxx | oyooloxx | oooyloxx | ooloxxoy | oooolooy
: 000001xx | 00000lxx | oyooolxx | oooyolxx | ooolxxoy | oooooloy
y) oocooolo | oooooolo | oyoooolo | oooyoolo | oooolooy ooxxxxly
00000001 00000001 0yo00001 000Yyoo001 oooooloy | ooxxxxoy
W WR S S Hq HT
(a) (b) (©) (d) (e) ®
Figure 3.1. Ilustration of the double column and row permutation
\ —
- (m=8,p=2,q=4,q=3).
N
- 1 l m
2 lToxx XXXXXXXX XXXy 1
4 lo1xx XXXXXXXX XXXy
- 1o XXXXXXXX XXXy
ol XXXXXXXX XXXy
Moxxxxxx XXXy
lolxxxxxx XXXy
. lToxxxx xxoy | [
. lolxxxx XXoy
N Moxx XX0Yy
’ lolxx XX0y
N 1o XX0y
. o1 XX0y
. ooy
4 loloy
Ix xIx xIx x xxlly
Ix xIx xix x xxloy m .
3
N Figure 3.2. lilustration of the general form of the matrix H /.
.
Y N R M N A
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i = Hi. (3.6)
Consider the matrix A/ whose general form is depicted in Figure 3.2. Note that the

° matri» resulting from the above permutation is ! when / = g. Note also that all non-
W-elements in H! are in the last two rows in columns / through m. Our objective now is

to reduce H9 to a LRQ matrix by eliminating these non-W-elements. We consider elim-

® inating them four at a time using the 2x2 identities on the diagonal of H'!. The necessary

matrices that should reduce H! to H!*2, for I=7,g+2, - - - m~3, are the following EULQ

rransformations.

0 0

! i
-Hp 1121 -Hpo

! !
_Hm,l—l "Hm,l

By repetitive application of Z! to H!, for I =q.,g+2,-- - ,m-3, we get H™"! which, in

general, has a non-W-element in its m~1,m entry and a nonconforming element in the

m.m"™ entry. Therefore. the following rank-one elementary transformation is sufficient to

reduce H™~! to the LRQ matrix W,
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Zm-1 =
—H,’,’::]lm /H,’:';,l m-—1

1/HE m

Theoretically, H,,,’";,,l is a nonzero element, since otherwise B is singular. Now, combin-

ing all transformations applied to 49, we obtain,
Zm-1zm-3 ... Z4 Hi=W,
and (3.6) becomes,
(Zm-tzm=3 ... ZERVZ-YB (R-VR}=2Zm-1Zm-3 ... Zd H (3.7)
(Z') B (R)=W,
which is equivalent to the required updated form (3.4), with
Z=ZRZT ... zm-¥izm-1 (3.8)
R =R-VR,and
W=zm-1zm=3 ... 24 HT

Note that Z in (3.8) is not a ULQ matrix, even though all its factors, except the permuta-
tion matrix R, are ULQ matrices. In practice, Z7! is stored factorized as in the first

braced term in the left hand side of (3.7).

Using the above, the updating algorithm may be stated as follows:

Algorithm 3.1 - The B.O.1.F. Updating Algorithm

0. Begin with the m x m matrix B =Z W R, and suppose column p of

B isreplaced by A .

1. Define ¢ such thatR , = e, .
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2. Set
[ Z1A . i=g;
S
W ;. otherwise.

3. Let

_{q+1.ifq is odd;
g = q-1,if q is even.

[

4. Set

e,1<i<gq;

g ) €42, St <m-1.
"i(_ eq‘,i:m_l;
eq,i =m.

5.H «R'SK.

6. Let

~ _1q.ifq is odd,;
“1g-1,ifq is even.

Forl=g,g+2,- - ,m-3.
7. Set

1,i=l;

-Hp_ 11, i=m-1,
-Hm’l N i=m ’

0, otherwise.

le.l ('_ﬁ

~ 7

1,i=l+1;

“Hpm 1,041, i=m-1;
_Hm,1+lv i=m;

0, otherwise.

ZII,I+1 (—J

\

Z jee,j#l and j2l+1.

.):-._;.-_ w..:- . ™ s

RYhY
5, AR

_____
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f
x
N 8.H «Z' H.
A
; Next /.
o
WS
A
~ 9. Set
. .
“Hy s mHp s i=m=1;
Zmal 3 VHp . i=m;
0, otherwise.
- Zm e, jem.
2
T 10.H «Z'H.
= 11. Set
B = {Z R (Zay!. - Zm-YHy-YyH (RVR}
o
- =ZWR.
This updating scheme inherits the major characteristics of the Forrest-Tomlin
update for the triangular factors of the basis. First, no new nonzeros are created in the
right factor W, since only deletions of items are required. Therefore, sparsity of W is
2 preserved and fill-in is minimized. Second, the lack of choice of the pivot elements
. makes this update less numerically stable than the Bartels-Golub-based updates. Thus,
. there is a gain in speed and storage at some sacrifice in numerical stability. -
4
. {
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IV.PARALLEL IMPLEMENTATION

In this section we describe a parallel implementation of two basic tasks of any sim-
piex based linear programming code, namely, basis reinversion and solution of the linear
systems. A parallel version of the Backward Quadrant Interlocking Factorization Algo-
nthm (BQIF) is presented in Section 4.1. Only the left factor is produced in its product
form while the right factor is produced in its explicit form. This form conforms with the
updating scheme of Section III. In this algorithm, parallelism is gained by reformulating
the BQIF Algorithm in terms of high-level modules such as matrix-vector operations.
These modules represent a high level of granularity in the algorithm in the sense that they
are based on matrix-vector operations, O (m2) work, not just vector operations, O (m)
work. The module concept has already proven to be very successful in achieving both
transportability and high performance of some linear algebra routines across a wide range
of architectures, as reported by Dongarra and Sorensen [1984-2] and Dongarra and

Hewitt [1986-1].

Given a basic feasible solution with basis B, each iteration of Dantzig’s simplex

algorithm involves solving the systems of equations ®B =c% and By =A ;. An

efficient parallelization of the simplex algorithm requires efficient parallel algorithms for
solution of these systems. Parallel algorithms for solving these linear systems using the
quadrant factors are presented in Section 4.2. The paralle] implementation discussed in
this section is proposed for an MIMD parallel computer that incorporates p identical pro-
cessors sharing a common memory and capable of multitasking, that is, the processors
arc capable of applying all their power to a single job in a timely and coordinated

manner.

4.1 The Module-Based BQIF Algorithm
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Given an m x m matrix B, the algorithm either indicates singularity of B or pro-

duces
Zm-1zm-3...Z1IB R =W, 4.1

where R is a permutation matrix, Z* is a rank-2 matrix of the form,

ko k+1
I
x x k
2k~ x X k+1 4.2)
X x
I
x| x :

This form conforms with the updating schemes of Section III. Its LU version has been
used in several LP codes (Reid [1982-1]) . At every stage a new Z! is produced and two
rows of W are updated. The availability of the updated rows of W at every stage allows
for parallel implementation when searching for a nonsingular 2x2 submatrix. Moreover,
it facilitates finding the 2x2 submatrix of largest determinant rather than finding one with
a nonzero determinant. This reduces the rounding error in the factorization process and

hence improves the numerical accuracy of the results (Shanehchi and Evans [1982-1]).
The major part of the algorithm is formulated in terms of three basic modules:

Module 1 : Search for a nonsingular 2x2 submatrix
Input : A eR2"

Purpose : Find column indices j; and j, such that

DET =A,j, . Ayj2~Azj1.A1j220.

Output : jy, j2. and DET or a singular indication.
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Module 2 : Matrix - 2 vectors product
Input :y!eR"+2 AlgR™m2, x1gRm2,
Purpose : Compute y! such that y! e~ yl + Al x1,

Output : yl.

Module 3 : 2 vectors - matrix product
Input :y2eR%2, x2eR?H, AZgRM,
Purpose : Compute y2 such that y2 &~ y2+x2 A2,
Output :y2,
These modules represent a high level of granularity in the algorithm in the sense
that they are based on matrix-vector operations, O (m?2) work, not just vector operations,

O (m) work.

Algorithm 4.1 : Reinversion

Let BeR™ ™ Then the following steps produce a singular indication if B is singular, or
decompose B as in (4.1) if B is nonsingular. The column indices are stored in IPVT (m).

Define the 2x2 submatrix §; ;(A) to be

Ai;  Ai
. —_— 4y "'l+1
Sij4)= [Am,j Ai+l.j+1] ' 4.3)

0. Initialize.

W1:2.1:m (‘—BI:Z,l:m
Fori =1,3,---.m-3

1. Find a nonsingular 2x2 submatrix.
Setn «m-i+landA « Wiis1im.

Call Module 1 (A n).

If A is singular, then terminate with B singular,

s

ki

.
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otherwise, permute columns
Wl:m.i with w’lzm.j, and W];m"q,] with Wl:m.jz-

Record permutation, IPVT (i )=j,, IPVT (i +1)=j2.

2. Obtain a new Z'.
Zi «1,where/ ismxm,S;;(Z%) & [Sii (W)L
nye—m—-i-1,ny e« i-l
Yy e Bisaminials X1 & Wiispisier-
Forl =13, - -,i-2
Allia « Zhamipis .
Next /.

Call Module 2 1,x} Al n,no)

;
Zl+2im.l:l“'l « )'1'

3. Update rows i+2, i+3 of W.
Ly~ i+l 1y m=i+].
A2 e Wiiiezm, Y2 & Bisgis3iszm-
For/=13, -,
IS TRES Zhgivadiaer -
Next /.
Call Module 3 (y2x2A2,01,15)

H,l' +2:i43,i42m €)Y 2-
Next .

4, Update W',
Fori =13, - m-3
S, i(W)e I, wherel is 2x2.

Wiistiszm & S“‘.(Zi) V'yi:x+l.i+2:m

.........
- .

-‘_'-"‘ .'.@ .~ R . . . TR R A . ) RO
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Nexti.

The general approach we propose for parallel implementation involves having the
parent processor prepare the parameters for a module and make use of the kids (subtask
processors) to work concurrently on that module. In Module 1, at most n(n-1)/2 columr
pairs should be checked. The parent sends to each kid the column indices to be checked
for nonsingularity, and stops all kids whenever one succeeds. As mentioned before, it is
possible to find the nonsingular 2x2 submatrix of largest determinant. To do this, the
parent sends the column indices to the kids, each kid finds the column pair of largest
determinant in his list, sends them to the parent, then the parent selects the best by com-
paring only p—1 values.

The concurrency in Modules 2 and 3 is obvious since they involve matrix-vector
operations. In Module 2 (matrix - 2 vectors product) parallelism is obtained by perform-
ing 2n independent inner products, where n, is the row dimension of the matrix. Simi-
larly, in Module 3 (2 vectors - matrix product) concurrency is gained by executing 2/;
independent inner products, where I, is number of columns of the matrix. Step 3 needs
only in+2:i+3,i:i+l from Step 2. These are the first two rows of y!. Thus, as soon as these
elements become available Step 3 may proceed. This can easily be synchronized. Finally.
in Step 4 the loop divides over i with completely independent tasks. However, the tasks
require different amounts of computation. Two solutions are possible. Either we adopt
dvnamic task queue allocation, or we statically allocate i=1,m-3 to one processor,

=3, m-5 1o the second, and so on.

4.2 Solving the Linear Systems

In this section we investigate the possible parallelism involved when we solve the
systems of equations B =¢®# and By =A ;. We assume that the basis matrix B is in

the form (4.1), that is

PP AL

A



e

-33-
.:;- Z”"lz’"‘3"-ZlBR=W, )
where Z* has the form (4.2), and W is a block unit upper triangular matrix with blocks of
size 2,that is it has the form (2.36). We compute the dual variables (1) using the follow-
- Ing steps: -
F. (1) Permutation : m=cBR.
(2) Solve a block triangular system : W =r.
: (3) BTRAN: m=nzm-1zm-3...71, ,
We compute y, the basis representation of the incoming column A ;, as follows:
(1) FTRAN : y =Zm-1Zm=3.. . Z1 4 .
(2) Solve a block triangular system : W y =y, .
X (3) Permutation : y =R y.
We present parallel implementations of the FTRAN operation, the solution of a
: block triangular system, and the BTRAN operation in Sections 4.2.1, 4.2.2, and 4.2.3, ’,
respectively.
4.2.1 The FTRAN in Parallel ‘.
-'- The rules for applying a Z* to an arbitrary vector v are as follows:
: a) Extract o « v, and 0y 4 & Viy. y
A b) Set vy « 0, and v, « 0.
‘ ¢) Compute Vv =v + 0¢ ZEm ik + Ops1 ZEm k41 -
Note that if vy = v4,1 =0, then v =v and no element of v will change.
2 An example is now given form =6, k = 3. Suppose we have
: 0 0 1 1
: 0 0 2 12
Z?_M- % é , V= 3 ,and u = 8 .
. 173 1/4 5 15
. 1/6 I/ZJ 6 16
L L J L
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Then the computation of Z3v is given by

1 .1 1.1 [.]
1 0 0 1
2 0 0 2
Z3v = 8 +3 % +4 é = i(l) ,
5 1/3 1/4 7
6 176 172 8.5
L J L L J
and the computation of Z3u is given by
| [ 1 [
11 0 0 11
12 0 0 12
2 1
Z3u = 8 +0 1 +0 2 = 8 .
15 173 1/4 15
16 1/6J' 12| |16
L I [ |

These rules are implemented in the following module:

Module : FTRAN Operation (A,v,n)
Purpose : Apply Z* to an arbitrary vector v.
Input :n,A eR™2 v gR™1.

Output : v, wherev =Z* v,

Steps : 1. Extract o ¢ v, and 03 & V3.
2.Setv;«0,and v, « 0.
3. Compute A ;01 A .
4. Compute A 2~ 02 A ».

5.Compute v Vv +A 1 +A >

Obviously, steps 3 and 4 are independent and can be executed in parallel. In step 5,

the work is partitioned over the rows of v, assigning each kid a block of rows to evaluate.

-------------

ot
......

.....

FNY N

L&

1



RENERCALS LK Y 5RN

porl sl L NN

-’l

-35-
4.2.2 Solving the Block Triangular System

The solution of an m x m triangular system of equations on a sequential computer
can be obtained by either a forward or backward substitution process which requires
O (m?) steps, each defined as one multiplication followed by one addition. In order to
solve the system on a parallel computer, methods which require O (m3) processors and,
hence, reduce the computation time to O (log2m ) have been developed ( e.g. Chen and
Kuck [1975-1] and Sameh and Brent [1977-1] ). Evans and Dunbar [1983-1] introduced
methods that run in O (m) time using O (m) processors. For practical purposes the pro-

cessor and storage requirement of these methods is unreasonably large.

In this subsection we consider solving the linear system
xW =p, (4.4)

where x, b eR™ and W is an upper triangular m x m matrix with 2x2 identity diagonal
blocks. This system may be solved by a forward substitution (FS) process described in

algorithmic form as follows.

Fori=12,---,m

i-1
X; =b,' - ZW,i.j X}.
j=1

Next i.

It is obvious that a uniprocessor will solve (4.4) sequentially in m (m—2)/2 steps by the
FS process. Let T, denote the time required to solve (4.4) using p processors, where one

step requires one unit of time. Then
Ty=m(m-2)/2.

With a parallel computer that has p processors, a minimum time requirement for the

solution of (4.4) is

min(Tp)=7'1/p=m(m—2)/(2p). 4.5)
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The minimum completion time of any algorithm based on FS is equal to the number of

terms in the expression that evaluates x,,, that is
Tmin =m - 2.

From (4.5) it is clear that a minimum of m/2 processors is necessary to solve (4.4) in the
minimum time of m-2 operations. Again this processor requirement is unreasonably

large for our application.

The machine we consider has a limited number of identical processors (p <30).
Therefore, we consider the question: if we are given a fixed number of processors, how
should the parallel operations be scheduled on the processors to minimize the solution
time of (4.4)? We propose to answer this question using a directed graph model that
represents the FS process as follows. The nodes of the graph represent tasks of equal exe-
cution time and the edges represent the precedence relationships between the tasks. Then
we apply a simple scheduling algorithm due to Hu [1961-1], called the level algorithm, to
schedule the tasks on the processors such that the total execution time is minimized. This
algorithm is known to be optimum for a tree graph, and it gives extremely good results
for general graphs as reported by Ramamoorthy et al {1972-1], Huang and Wing [1979-
1]. and Wing and Huang [1980-1].

We first organize the FS process in terms of operations of equal time and define the
corresponding directed graph. Let xi{ = [x; , x;4;]. Partition x, b, and W into blocks of

size 2. Using S; ; as defined in (4.3), the above FS process can then be written as

Fori =13, - ,m=]

f=bi - x/ §; j(W).
g j=1.3.2-.i—2 1 (W)

Nexti.

Let the following operation, where x' is used to update x/, define a task

x) —x) —xt S; j(W). (4.5)

...........
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For Hu's algorithm we assume that the execution time of an operation (4.5) is one unit (4
multiplications and 4 additions). We can see that the FS process consists of a set of
operations (4.5), on which a set of precedence relations exists. That is, to complete the
evaluation of x¢ we require xi-2, for i =3,5, -+ ,m—1. The process can therefore be

represented by a directed graph G (V ,E ) where the vertex set V is defined as
V={v; j lv; j represents an operation (4.6)],
and the edge set E is defined as

E={(vij ,vi1)\operation vy requires the direct result of operation v; ;}.

We shall call G (V,E) the forward substitution task graph, and refer to it by FSTG.
In Figure 4.1 the FSTG for m=10 is presented. For every v; ; in the FSTG, the pair i,/ is
indicated. A node is an initial node if it does not have a predecessor and is a terminal
node if it has no successor. It is clear that the FSTG has only one terminal node, at which
i =m-3 and j = m~1. Accordingly, the minimum completion time, denoted by D, of the
FSTG is equal to the number of nodes on the fongest path from an initial node to the ter-
minal node. Thus, D = (m/2) - 1, which is the number of times operation (4.6) is exe-
cuted for x™-1,

We next determine the levels of the vertices of the FSTG. Define the level number
(l; j) of a node v; ; as follows: 1) the level of the terminal node is D, 2) the level of a
node that has one or more successors is equal to the minimum of the levels of its succes-

sors minus one. Applying this definition to the FSTG, we can conclude that
Lij=(i+1)/2 (4.6)

The level number is simply the latest time by which node v; ; must be processed in order
to complete the task graph in the minimum time D . The level numbers of the nodes of
Figure 4.1 are given as shown.

Once the level numbers of the operations are determined, we apply Hu’s scheduling
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algorithm to assign operations to processors. Define a ready task to be one whose

immediate predecessors have all been processed. The scheduling algorithm is as follows.

A[gorithm 4.2: Hu's Scheduling Algorithm
1. Among all the ready tasks, schedule the one with smallest level number.

2. If there is a tie, schedule the one with the largest number of immediate succes-

SOTS.

Applying this Algorithm to the FS process represented by FSTG, the computations
are organized as follows.

Algorithm 4.3 : Forward Substitution

Setx! « bl
Fork =35,- - m-1
xk bk —x1 8§ (W)
Next k.
Fori=3,--- .m-3 |
Forj = i42.i+4, "« m—1
X ex) =xt S, (W)
Next j.

Nexti.

All operations in loop & are independent and have the same level number. Their
level number ({y, = 1) is the smallest among all other operations in the Algorithm, and
hence they are executed first. Similarly, all operations in loop j are independent and have
the same level number as given by (4.6). The ordering of index i predicates the execution
of the operations by increasing level number. This satisfies the first criterion in Hu's
Algorithm. The second criterion imposes the ordering of the index j. That is, the number

of immediate successors of v; ; is always greater than or equal to that of v; ;. for
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J=it2,i+4, - m-1.

A parallel implementation of Algorithm 4.3 involves having the parent processor

partition the work in loop k among the kids. Then for every i, the computational tasks of

loop j are again divided among the kids.

Lower bounds on the completion time of a task graph given a fixed number of pro-
cessors were derived by Ramamoorthy et al. [1972-1]. Let n; be the number of nodes in
level k. Let 1* (p) be the minimum completion time to process a task graph with p pro-
cessors. Then

i
> M
t*(p)2max | £ — 4+ D ~j|, 4.7
i p
where D is the minimum completion time of the task graph and [x ] denotes the smallest
integer 2 x. The first term in the expression denotes the minimum number of time units
required to complete all the operations of the first i levels using p processors. The term
D —i is equal to the number of remaining levels yet to be processed. This bound may be

useful in demonstrating optimality of the scheduling using Hu’s Algorithm.

4.2.3 Parallel Implementation of the BTRAN Operation

In this section, we consider the parallel implementation of the following operation
n=nZm-1Zm-3 .. - Z1,

where 7 is an arbitrary vector of m elements and each Z* is an m x m rank-2 matrix that

has the form (4.3).

The rule for computing & =u Z* is as follows:
a) Setit;, « u; fori#k and i#k+1.
b) Set ity — uy.m Zt:m,k-

¢) Set lTk+] — Ug.m ZI(:M."‘H .
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For example, let m =6, k = 3 and suppose we have

Z54 = ,and w=[111111].

W= NOO
VBN —CO |

L -

Theni=uZk=[{1112911).
Note that it differs from u in only the k* and the k+15 elements. Note also that the
elements «,,i=1, - k-1, are not required in computing u. Using these observations,

the BTRAN process may be represented by the following.

Fork =m-1,---,1
Wy €& Up.m Zf:m.lv
Ups) & U, Zt:m,kﬂ-

Next k.
We now apply the methodology stated at the end of the previous subsection. Let the fol-
lowing operations define a task

ut —uk S ((ZF). (4.8)

whe—ul +ut S; j(Z)). 4.9)

We assume that the execution time of both operations is one unit. The task graph
G (V ,E) of the BTRAN process is defined by the vertex set V, where
an operation (4.8),if i=j;

| v;, represents )
an operation (4.9), otherwise

Vo= v"’j

and the edge set E, where

E ={(v;, ,vk1)loperation vy ; requires the direct result of operation v, ).

_____
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G (V,E) has only one terminal node at which i =3 and j = 1. Following the same argu-

ments used earlier with FSTG, we conclude that

D=m/i2,
and
[1, ifi = j;
11] =
(m—i+3)/2,otherwise.
Applying Hu’s Algorithm to the BTRAN task graph yields the following ordering
of computations.

Algorithm 4.4 : BTRAN Operation

Fork =m-1,m-3,---,1
uk —uk S ((Z%).
Next k.
Fori=m-1m-3,---3
Forj=i-2,i-4,---,1
w e—ul +ut S, ;(@Z)).
Next j.

Nexti.

The ordering of the index i is imposed by the first criterion of Hu's Algorithm. The
ordering of the indices k and j is the result of applying the second criterion. Parallelism
is gained by having the kid processors work first on loop & in parallel, and then for every

i, having the kid processors work on loop j in parallel.

e
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V. SUMMARY

Evans and Hatzopoulos [1979-1] developed a new matrix factorization, known as
the Quadrant Interlocking Factorization (QIF), for solving linear systems on parallel
computers. In this paper we have presented the algorithms required to use this new fac-
torization in Dantzig’s simplex algorithm for linear programming. This work may be
viewed as a parallelization of the simplex method using a quadrant interlocking factori-

zation for the basis inverse.

In Section II, the factorization algorithms are developed, and the relationship of
quadrant and triangular matrices is presented. In Section III, a new algorithm is presented
for updating the factorization during a basis exchange step. In Section IV, we present a
parallel implementation of the factorization algorithm, and develop the algorithms
required to solve the linear systems of the simplex method on a parallel computer using
the QIF of the basis. For each algorithm the concurrency among the steps is revealed, the
computations are organized and a parallel implementation is proposed. The algorithms
are designed for an MIMD parallel computer that incorporates p identical processors

sharing a common memory and capable of applying all their power to a single applica-

tion in a timely and coordinated manner.
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L ABSTRACT

The objective of this investigation is to computationally test parallel

L algorithms for finding minimal spanning trees. Computational tests were run on

a single processor using Prim's, Kruskal's and Boruvka's algorithms. Our

implementation of Prim's algorithm is superior for high density graphs, while

+ our implementation of Boruvka's algorithm is best for sparse graphs. Implemen-
tations of parallel versions of both Prim's and Boruvka's algorithms were

tested on a twenty-cpu Balance 21000. For the environment in which a minimum

spanning tree problem is a subproblem within another algorithm, the parallel
implementation of Boruvka's algorithm produced speedups of three and five on
five and ten processors, respectively; while the parallel implementation of
Prim's algorithm produced speedups of three and five on five and ten
processors, respectively, The one-time overhead for process creation negates
most, if not all of the benefits for solving a single minimum spanning tree

subproblem.
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I. INTRODUCTION i
‘h

A

The United States along with other developed countries is entering a new ;'2
generation of computing that will require software engineers to redesign and W
o~
reevaluate standard algorithms for the new parallel processing hardware that is ﬁ;
i

o)

being installed throughout the developed world. It may well be that algorithms b

which proved to be superior for single processor machines may prove to be Xy
N
inferior in some of the new parallel processing environments. One of the more ;:j:
G
popular new parallel machines is Sequent Computer Systems' Balance 21000, The ﬁ?;?

objective of this investigation is to computationally test parallel algorithms

for finding minimal spanning trees on a twenty-cpu Balance 21000.

An undirected graph G = [V,E] consists of a vertex set V and an edge set

E. Without loss of generality we assume that the edges are distinct, If G' =

[V',E'] is a subgraph of G with V' = V, then G' is called a spanning subgraph %ik

for G. If, in addition, G'is a tree, then G' is called a spanning tree for G.

A graph whose components are trees is called a forest, and a spanning subgraph R

for G, which is also a forest, is called a spanning forest for G. We will call

{[v;,T;): Vi = {uy), Ty =9, u; e V} the trivial spanning forest for G and the ?:t
{V{,T{] trivial trees. Associated with each edge (u,v) is a real-valued cost

c(u,v). The minimum spanning tree problem may be stated as follows: Given a

connected undirected graph each of whose edges has a real-valued cost, find a Ef
spanning tree of the graph whose total edge cost is minimum. e
Applications include the design of a distribution network in which the

nodes represent cities or towns and the edges represent electrical power lines,

water lines, natural gas lines, communication links, etc, The objective is to :
s Lo

design a network which uses the least length of cable or pipe. The minimum A
-« "
-~
spanning tree problem is also used as a subproblem for algorithms for the 5

travelling salesman problem (see Held and Karp [6, 7] and Ali and Kennington ST
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[3]). Some vehicle routing algorithms require the solution of a travelling

PRI

salesman problem on a subset of nodes. Hence, a wide variety of applications

K q
require the solution of minimal spanning trees. Some applications require a

single solution and some use the model as a subproblem within another 4

algorithm.
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II., THREE CLASSICAL ALGORITHMS

The algorithms in current use may be traced to ideas developed by Prim,
Kruskal, and Boruvka. These three classical algorithms all begin with the
trivial spanning forest Gy = ([V;,T;], i = O,...y |V|-1). A sequence of
spanning forests is obtained by merging spanning forest components. Given
spanning forest Gy, a nonforest edge (u,v) is selected and the components
[V;,T;] and [Vj,Tj] with u € V; and v € Vj are removed from Gy and replaced by
(Ve Tgl, where g=k+ [V], Vo = ViUV, and Ty = T;U T3 U {(u,v)), yielding
spanning forest G, 1. After m = |V|-1 edges have been selected, Gy =
([Vyp Togl) = {[V,T]) is a minimal spanning tree for G.

Let [V,,T;] and [Vj,Tj] denote two disjoint subtrees of G. Define dj;,
the shortest distance between the trees, by dj; = min {c(u,v): (u,v) €E, v«
Vi, v e Vj}. The three classical algorithms may be viewed as different
applications of the following result:

Proposition 1.

Let VO, Vl,...,Vn denote vertex sets of disjoint subtrees of a minimum
spanning tree for G. Let c¢(u,v) = djn = ?;g djn with (u,v) € V:j x V,. Then
(u,v) is an edge in a minimal spanning tree for G.

A proof of Proposition 1 may be found in Christofides [4, pp. 135-136].

In Prim's algorithm, the nonforest edge (u,v) for Gk is always selected so
that (u,v) € Vy x Vj*, where j¥* is the largest index j such that [Vj'Tj] e Gp.
Thus a single component continues to grow as trivial trees disappear. An ex-
cellent description of Prim's algorithm is given in Papadimitriou and Steiglitz
[15, p. 273], along with its (serial) computational complexity of O([Vlz). It
is believed that this algorithm is best suited for dense graphs.

In Boruvka's algorithm, the nonforest edge (u,v) for G is always selected

so that (u,v) € V g x Vj, where i* is the smallest index i such that [vi'Ti] €
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Gi. Thus a variety of different-sized components may be produced as the

algorithm proceeds. Al1l trivial trees will be removed first in the early

stages of this algorithm. A description of Boruvka's algorithm is given in
Papadimitriou and Steiglitz [15, p. 277], along with its (serial) computa-
tional complexity of O(|E| log |V|). This algorithm appears to be best suited -
for sparse graphs.
Kruskal'’s method may be viewed as an application of the greedy algorithm. -
The minimum spanning tree is constructed by examining the edges in order of Ny
increasing cost. If an edge forms a cycle within a component of Gy, it is
discarded. Otherwise it is selected and yields Gyy1 Here also different-
sized components may be produced. A description of Kruskal's algorithm is

given in Sedgewick [18, pp. 412-413], along with its (serial) computational

complexity of O(|E| log |E|).
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I1I. COMPUTATIONAL RESULTS WITH SEQUENTIAL ALGORITHMS

Computer codes for Boruvka's algorithm, Kruskal's algorithm, and three
versions of Prim's algorithm were developed. SPARSE PRIM maintains the edge
data in both forward and backward star format, while DENSE PRIM maintains the
edge data in an |{V| x |V| matrix. HEAP PRIM maintains the edge data in both
forward and backward star format and makes use of a d-heap as described in
Tarjan [19, p. 77). RKRRUSKAL makes use of a partial quick sort as described in
[1, 8] to produce the least cost remaining edge. BORUVKA is a straightforward
implementation of the algorithm presented in [15].

Random problems were generated on both n x n grid graphs and on completely
random graphs. All costs were uniformly distributed on the interval
[0, maxcost]. All codes are written in FORTRAN for the Balance 21000.

The computational results for grid graphs are presented in Table 1. These
graphs are very sparse énd BORUVKA was the clear winner. The computational
results for random graphs may be found in Tables 2 and 3, SPARSE PRIM was the
winner for problems whose density was at least 40% with HEAP PRIM running a
close second. For problems with densities of 20% or less, HEAP PRIM was the
winner with KRUSKAL running a close second. KRUSKAL appeared to be the most

robust implementation, working fairly well on all problems tested.
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IV. PARALLEL ALGORITHMS

Parallel versions of the three classical algorithms have appeared in the
literature (see {2, 5, 9, 10, 11, 12, 16, 17]), however; no computation
experience has been reported. The overhead required for coordinating the work
of multiple processors can only be determined by actual implementation on a
parallel processing machine.

A parallel version of Boruvka's algorithm was developed for grid graphs
and a parallel version of Prim's algorithm was developed for high density
random graphs., Both algorithms use modules (subroutines) which may be executed
in parallel. Suppose there are p processors available for use. The parallel
operations are initiated by the main program using statements of the form:

for m = 1 to p, fork module z(m).

The main program and p-1 clones will each execute module z in parallel.
Processing does not continue in the main program until all processors complete
module 2. The argument "m" allows each of the p processors to process
different parts of the data or follow a different path. We assume that all
data in the main prc _.am is shared with module z. If module z has local non-
shared variables, then these will be explicitly stated in the description of

the module. Multiple processors which update the same variable, set, or list

use locks to insure that only one processor has access to a given item.

IR A




4,1 Parallel Boruvka For Grids

Using the fork and lock constructs we present a parallelization of Boruvka's
algorithm for grid graphs. The most expensive component of Boruvka's
sequential algorithm may be described by the following procedure:
for all (u,v) € E
let i and j denote the subtrees containing u and v, respectively;
if i ¢ j then
if cost(u,v) < min(i) then min(i) <~ cost(u,v)
if cost(u,v) < min(j) then min(j) < cost(u,v)
end if
end for
That is, all the edge costs must be examined and certain subtree data are
updated. Our parallelization of this scan relies upon a partitioning of the
grid into p components (one for each processor). A three processor par'i-

tioning of a 7 x 7 grid network is illustrated in Figure 1.

Figure 1 About Here

The above edge scan is performed in two stages. The first stage performs
a parallel scan over edges boch of whose vertices lie within the same partition.
The second stage performs a parallel scan over edges across cut sets. If each
partition consists of at least two rows of the grid, then all subtree data up-
dating can be performed independently without the requirement of a lock.

The second part of Boruvka's algorithm is to merge two subtrees by
appending a new edge, The merger of subtrees, both of which lie in the same
partition can also be executed in parallel.

Using this data partitioning approach, the parallel algorithm may be

<t3ted as follows:
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Input: 1. Ann x n grid graph G = [V,E] with V = {(Viseeey v

Output: A minimal spanning tree [V,T].
Assumption: G is connected and has no parallel edges.

begin

PARALLEL BORUVKA FOR GRIDS

q)'
2. For each edge (u,v) ¢ E a cost c(u,v).

3. The number of processors, p, available for use.

T4 @, r <« fn/pl, 9 ¢~ n - rp;

If r < 2, terminate.

for i =1 to q, Si <« {vi);

C <~ [Sl,..., Sq};

W) & {v: v €V and v is in grid rows 1 through v + &};

for m = 2 to p,

Wy 4= (vi v eVaeand v isin grid rows (m-1)r + 2 + 1 through mr + ¢ };

form=1 to p, X; <- {C(u,v): (u,v) € E, u e Wpe and v € W}

form=1top-1,

Xop €= ((uwv): (u,v) € Ewith uve Wpe VE W qoruce Woelr V € Wo)s5

for i =1 to q, cpu(i) ¢ m, where vy e Wi

(comment : S{+e+ss S, are assigned to the p processes)

q
create p-1 clones

(comment: create p-1 additional processes and place them in the wait
state)

while |C| # 1
for m = 1 to p, fork module edgescan(1l,m);

(comment: forks are executed in parallel and processing does not continue
in the main program until all processes complete edgescan)

for m = 1 to p-1, fork module edgescan(2,m);

L <-0;




end

begin

end

(comment: k

for m = 1 to p, fork module merge(m);

for all (u,v) € L do

let Si and Sj be the sets containing u and v, respectively;

Si <~ Siu SJ’ C <« C\SJ;
else

Sj < Si USJ-, C « C\Si;
end if
T 4~ T U(u,v);

end for

end while

kill the clones

module edgescan(k,m)

k
mand m+ 1)

for all (u,v) ¢ Xem

1 implies the scan is within partition m,
2 implies the scan is across the cut set separating partitions

let S, Sj be the sets containing u and v, respectively;

if i # j then

if ¢(u,v) < min(i) then min(i) <4~ c(u,v), shortest(i) < (u,v);

if c(u,v) < min(j) then min(j) <- c(u,v), shortest(j) «- (u,v);

end if

(comment: shortest(i) is the least cost edge incident on S;)

end for

.....

s

.....



module merge(m)
begin
for all Vi € Wy do
(u,v) & shortest(k)
let §,, Sj be the sets containing u and v, respectively;
if i # j then

if cpu(i) = cpu(j) then

if ISII < ISJI then

S{ « SV Sj, C <~ C\Sj;
else
Sj &~ SiLJ Sj, C <« C\Si;
end if
lock T
T<&«T LJ{(u,v)]
unlock T
else
lock L
L < L U ({(u,v))
unlock L
end if
end if

end for
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b 4.2 Parallel Prim

LA

The most expensive part of Prim's sequential algorithm is to find a
minimun entry in an |{V| length array. This search can be allocated over p

processors, each of which finds a candidate minimum. The best of the p candidates

becomes the global minimum., Under the assumption that parallel edges do not
exist, there is also a scan of edges over the forward and backward star of a
given node which can be executed in parallel. Data partitioning via the use of

independent cut sets could alsc be used for random graphs in a manner similar

N
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to that described in Section 4.1. That has not been done in this

investigation,

The parallelization of Prim's algorithm may be stated as follows:
PARALLEL PRIM

1. A graph G = [V,E] with V = (vy,..., vj}.

2. For each edge (u,v) € E, a cost c(u,v).

3. The number of processors, p, available for use.
Output: A minimal spanning tree, [V,T].
Assumption: G is connected and has no parallel edges.
begin

U < {Vl), W &— Vi T ¢~ 0

for i =1 ton, d(i) 4~ = ;
create p-1 clones

(comment: create p-1 additional processes and place them in a wait
state)

F 4~ {(w,v) € E);
partition F into mutually exclusive sets Fl,...,Fs, s £ p;

for m = 1 to s, fork module forwardscan(m);

PN LTSNS, SRR

B < ((u,w) ¢ E};

R
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partition B into mutually exclusive sets Bl--°°-Bt' t < p;
form =1 to t, fork module backwardscan(m);
while U # V do
globalmin ¢~ o
for m =1 to p, fork module nodescan(m);

(comment: forks are executed in parallel and processing does not

continue in the main program until all processes complete
nodescan)

T« T U{e(ibest)}, U« U U(w);

F < {(w,v) € E};

partition F into mutually exclusive sets Fioeee, Fgy 8 < ps;
for m = 1 to s, fork module forwardscan(m);

B <- {(u,w) ¢ E};

partition B into mutually exclusive sets Bl,..., B

I
o

tr t
for m = 1 to t, fork module backwardscan(m);
end while
kill the clones
end
module nodescan(m)
local data: min, x
begin
min ¢~ o
for i = m to n step p do
if d(i) < min then min <¢- d(i), x <« i
end for
lock globalmin
if min < globalmin then globalmin < min, ibest 4- x, w ¢- Vys

unlock globalmin

end
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module fowardscan(m) -
begin ‘
L 4 for all (u,v) € F, do;
if c(u,v) < d(v) then d(v) <& c(u,v), e(v) &« (u,v);
end for
& end -
module backwardscan(m)
begin ._:E
® for all (u,v) € By do; o
rd
if c(u,v) < d(u) then d(u) & c(u,v), e(v) <« (u,v); '_:-
end for ‘:

end




V. COMPUTATIONAL RESULTS WITH PARALLEL ALGORITHMS

Both algorithms of Section IV were coded in FORTRAN for the Balance 21000
locs: ' in the Center for Applied Parallel Processing at Southern Methodist
University. The Balance 21000 is configured with twenty NS32032 cpu's, 32
Mbytes of shared memory, and 16K user-accessible hardware locks. Each cpu has
8 Kbytes of local RAM and 8 Kbytes of cache. The Balance 21000 runs the DYNIX
operating system, a version of UNIX 4.2bsd. DYNIX includes routines to create,
synch:onize, and terminate parallel processes from C, Pascal, and FORTRAN. More
details about the Balance 21000 may be found in [13].

Table & gives the computational results with Boruvka's algorithm., The
times are wall clock times and are the average for three runs. The first row
in e~ 1 table contains the time for the sequential version of BORUVKA and all

other rows contain times for the parallel version. The sequential version is

257 .:.es of code, while the parallel version required over 400 lines. The
sy« .. for a row is calculated by dividing the best sequential time by the
tizs» - that row,

.n:tially, the parallel code creates the additional processes to be used
ani v+7uires each of them to build data tables which give the location in
vir' .- memory of all shared data. Once this is done, the processes can be
use” repeatedly with little system overhead. However, this initial creation
and the subsequent killing of those processes at termination can be very
expensive for this type of problem. The first column of times includes the
creation and process termination time while the second does not. Hence, if a
350 x 350 minimal spanning tree was to be obtained one time, then the best
speedup is 2.6 using seven cpu's. If however, this is a subprogram of a larger
system, then a 350 x 350 problem can yield a speedup of four on six processors

and a8 speedup of five on ten.
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Table 4 About Here <
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Table 5 gives the computational results with Prim's algorithm. No speedup

is achievable for a one-time solution. For environments in which the minimum

“r

spanning tree problem is a subproblem, speedups of three and five were obtained .

on five and ten processors, respectively.
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VI. SUMMARY AND CONCLUSIONS

Five computer codes were developed to solve the minimum spanning tree
problem on a sequential machine, These codes were computationally compared on
both grid graphs and random graphs whose densities varied from 5% to 100%. The
implementation of Boruvka's algorithm (see [15, p. 277]) was the best for grid
graphs. An implementation of Prim's algorithms using a sparse data representa-
tion (see [15, p. 273]) was best for high density random graphs while an imple-
mentation of Prim's algorithm using a d-heap (see [19, p. 77]) was best for
lower density random problems. Kruskal's algorithm using a quicksort is the
most robust of all the implementations, ranking either second or third in all
computational tests. Both Boruvka's and Prim's algorithms were parallelized by
the method of data partitioning (also called homogeneous multitasking). This
involves creating multiple, identical processes and assigning a portion of the
data to each processor. For the environment in which a minimal spanning tree
problem is a subproblem within a larger system, speedups of five on ten
processors were achieved with both Prim's and Boruvka's algorithms. The
overhead for parallel processing on the Balance 21000 negates most of the
benefits of parallel processing for the first solution of the minimal spanning

tree.
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Teble 1. Comparison of Sequential Algorithms on Grid Graphs
(cost range is 0 - 10,000)

Grid Size | Edges | Graph DENSE | SPARSE | HEAP | KRUSKAL | BORUVKA ;
nxn Density | PRIM PRIM PRIM q
/
15 x 15 420 1.72 1.70 .36 .27 .19 .12 ‘
18 x 18 612 1.22 | 3.54 74 42 .30 17 o
20 x 20 760 1.02 s.43 | 1.10 .54 .39 .21

2 x 24 | 1,104 g2 132 | 2.9 .82 .63 .30 ;
28 x 28 | 1,512 52 | 21,00 | 4.09 | 1.13 .86 .46 [
30 x 30 | 1,740 A% 12782 sl 11.37 ] 1.1s .55 -
| Total Time (secs.) | 70.82 | 13.85 | 4.55 | 3.52 | 1.81 | ‘
— - - (]
| kank | 5 | A 2 | Ry
*
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Table 2. Comparison of Sequential Algorithms on High Density Random Graphs.
(cost range is 0 - 10,000)
Vertices Edges Graph DENSE SPARSE | HEAP KRUSKAL | BORUVKA
Density | PRIM PRIM PRIM

200 19,900 1007 1.39 1.14 1.44 1.52 3.01

200 15,920 80% 1.39 .97 1.22 1.52 1.96

200 11,940 607 1.39 .79 .99 .96 1.47

200 7,960 40% 1.39 .61 .76 .89 1.02

400 79,800 1007 5.67 4.55 5.42 4,45 12.03

400 63,840 807 5.69 3.85 4.53 3.58 10.28

400 47,880 60% 5.70 3.13 3.62 2.82 7.26

400 31,920 40% 5.71 2.49 2.68 1.97 4.85

600 179,700 100% 13.28 10.39 11.98 12.38 29.85

600 143,760 807 13.66 8.79 9.99 14,99 23.72

600 107,820 607 13.16 7.15 7.99 10.63 17.79

600 71,880 407 13.02 5.55 5.67 6.05 11.80
|Total Time (secs.) | 81.45 | 49.41 | 56.29 | 61.76 | 125.04
| Rank | 4 | 1| 2 | 3 5




Table 3.

Comparison of Sequential Algorithms on Low Density Random Graphs.

(cost range is 0 - 10,000)

Vertices Edges Graph DENSE | SPARSE HEAP | KRUSKAL | BORUVKA
Density | PRIM PRIM PRIM
200 3,980 20% 1.40 A .49 .50 .52
200 1,990 10% 1.40 .36 .39 .40 .35
200 995 5% 1.39 .32 .32 .35 .17
400 15,960 20% 5.66 1.75 1.62 1.47 2,46
400 7,980 102 5.1 1.40 1.12 1.53 1.30
400 3,990 5% 5.72 1.21 .86 1.20 .72
600 35,940 207 13.04 3.94 3.39 3.99 6.02
600 17,970 102 13.04 3.05 2.14 2.89 2,86
600 8,985 Y 4 13.07 2.73 1.50 2.12 1.52
|Total Time (secs.) | 60.43 | 15.20 | 11.83 | 14.45 | 15.92
| Rank i s | 3 | 1 | 2 | 4
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Table 4. Parallel Boruvka on 350 x 350 Grid Graph
| V] = 122,500 |E| = 244,300
: (cost range is 0 - 100,000)

, : :
cpu's PARALLEL BORUVKA PARALLEL BORUVKA _P:]
(includes process creation) (excludes process creation) :'i:
) time speedup time speedup :'.'-
1+ 98.21 1.00 98.21 1,00 o
1* 112,57 .87 103.86 .95 :
, 2 66.93 1.47 57.49 1.71 ;-
3 50.26 1.95 40,92 2.40 o
4 40.25 2.44 29.95 3.28
5 39.00 2.52 26.52 3.70 :2
- 6 38.69 2.54 23.45 4.19 -
7 37.70 2.60 21.62 4.54
. 8 40.98 2,40 21.58 4.55 %
9 42.49 2.31 20.85 4.71 o
10 41,30 2.38 17.52 5.61 f

+
best sequential BORUVKA code
* parallel code run with a single processor
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Table 5. Parallel Prim on G = [V,E] with |V| = 900 and |E| = 404,550

(cost range is O - 100,000) —

cpu's PARALLEL PRIM PARALLEL PRIM
(includes process creation) (excludes process creation)

time speedup time speedup i}
1+ 24.88 1.00 24.88 1.00
1% 27.09 .92 26.98 .92
2 23.35 1.07 15.12 1.65 '
3 22,63 1.10 10.84 2.30
4 25.31 .08 8.74 2.85
5 28.43 .88 7.39 3.37
6 31.54 .79 6.62 3.76
7 36.51 .68 6.03 4,13
8 41,08 .61 5.62 4,43
9 46.04 .54 5.30 4,69
10 50.54 .49 5.02 4.96

+
best sequential PARALLEL PRIM code
* parallel code run with a single processor
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